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We present a statistical theory of intermittency in plasma turbulence based on short-lived coherent structures
(instantons). In general, the probability density functions (PDFs) of the flux R are shown to have an exponen-
tial scaling P(R) ∝ exp (−cRs) in the tails. In ion–temperature–gradient turbulence, the exponent takes the value
s = 3/2 for momentum flux and s = 3 for zonal flow formation. The value of s follows from the order of the high-
est nonlinear interaction term and the moments for which the PDFs are computed. The constant c depends on the
spatial profile of the coherent structure and other physical parameters in the model. Our theory provides a pow-
erful mechanism for ubiquitous exponential scalings of PDFs, often observed in various tokamaks. Implications
of the results, in particular, on structure formation are further discussed.
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1. Introduction
The need for statistical theory of plasma turbulence

has grown significantly over the past decade with accumu-
lating evidence from simulation and experiments showing
highly intermittent and bursty turbulent transport [1–9].
Probability density functions (PDFs) inferred from these
experiments are strongly non-Gaussian, particularly in the
tails, due to rare events of large amplitude. For instance,
exponential scalings appear to be a robust feature of the
tails of heat, particle, and momentum fluxes in a variety
of tokamaks (for example, [10–13]). These observations
suggest that Gaussian statistics and average transport coef-
ficients based on mean field theory fail to capture essential
transport processes of intermittency and demand a proper
nonlinear theory for events of large amplitude. Given the
potentially disastrous impact of these events on confine-
ment, the importance of a predictive theory of PDF tails
cannot be overemphasized.

While these coherent structures mediate significant
transport, as mentioned above, they can also play a com-
plementary role in inhibiting transport via enhanced decor-
relation. Improvements in plasma confinement by mean
flows and zonal flows [14] are notable examples. Given
the importance of such structures in intermittency and
transport, the PDF of the formation of the structure itself
is a quantity of ultimate interest. For instance, an interest-
ing issue is the prediction of the PDF of the L→H transi-
tion [15].

This paper presents a non-perturbative theory of PDFs
in plasma turbulence and investigates the structure forma-
tion — in particular, zonal flow formation. Our theory
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is motivated by the following key experimental observa-
tions. The first is that coherent structures (which tend to
form naturally in nonlinear systems) mediate fast transport
and are responsible for the intermittency in the PDFs. The
second is that coherent structures tend to be short-lived in
time, causing bursty events (for example, [12, 13]). Ex-
amples of such short-lived structures include streamers,
blobs, and vortices. This empirical fact that short-lived
coherent structures are responsible for intermittency and
PDF tails is precisely built into our theoretical tool: the so-
called “instanton method.” Section 2 provides a few brief
comments on the method. Sections 3 and 4 describe the
use of this method to develop a non-perturbative theory of
the PDFs of structure formation in the ion–temperature–
gradient (ITG) model. Section 5 presents a discussion and
conclusions.

2. Instantons
This section provides historic background on instan-

tons to help readers understand their physical significance
and why they are useful for the development of a statistical
theory of turbulence. Instantons originated in quantum me-
chanics as a non-perturbative way of computing the transi-
tion amplitude from one ground state to another [16]. The
basic idea is that the uncertainty relationship between posi-
tion and momentum allows one to formulate the transition
amplitude from the initial position xi to the final position
xf by a path integral as follows (see Fig. 1):

〈xf |eiHT/�|xi〉 = N
∫ x=xf

x=xi

Dx(t)eiS/� ,

where S =
∫

dt
[
mv2/2 − U(x)

]
is action, and H = mv2/2+

U(x) is a Hamiltonian with potential U. We can expand
the left side of the equation in terms of a complete set of
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Fig. 1 Trajectories of a particle between initial position xi at
time t = 0 and final position xf at t = T .

energy eigenstates to obtain

〈xf |eiHT/�|xi〉 =
∑

n

〈xf |En〉〈En|xi〉eiEnT/� .

The previous equation implies that the transition ampli-
tude from one ground state to another can be isolated
by taking time to be imaginary. Expressed in terms of
imaginary time, action becomes “Euclidean action” S E =∫

dt[mv2/2 + U]. An instanton is a saddle-point solu-
tion of Euclidean action and corresponds to one particular
path that leads to the transition amplitude between ground
states. For instance, in the case of double-well potential,
an instanton is a tunneling solution from the bottom of one
potential well to another (see Fig. 2 (a)). If a solution go-
ing from one ground state to the other is called an instan-
ton, a solution traveling in the opposite direction is called
an anti-instanton. As noted above, a distinguishing char-
acteristic of such solutions is temporal localization (see
Fig. 2 (b)). The instanton method was used in gauge field
theory to compute the transition amplitude from one vac-
uum to another vacuum [17]. About 20 years later, the
method was adapted to a classical fluid problem by several
authors [18–21].

3. PDF Tails in Plasma Turbulence
Armed with general concepts of instantons, in this

section, we develop a general theory of PDFs in plasma tur-
bulence. In plasma turbulence, unpredictability can arise
either from the chaos intrinsic to the system or from an ex-
ternal random forcing. Between the two, clearly, it is much
easier to formulate a PDF in the case of an external forc-
ing, to which the following discussion is limited. In fact,
it is well known that a similar path integral can be formu-
lated for stochastic equations with a random external forc-
ing [22, 23]. For instance, the effective action for classical
forced systems was formulated by Martin, Sigga, and Rose
in 1973 [24]. However, the non-perturbative evaluation
of a path integral had to wait until the (non-perturbative)
saddle-point (instanton) method was used to compute the
tail of the PDF [18, 19].

Fig. 2 (a) Double-well potential with a particle sitting at the bot-
tom of a potential well. A particle going from x = −a to
a is an instanton; a particle going from x = a to −a is an
anti-instanton. (b) Position of a particle as a function of
time, traveling between x = −a and a. The positive (neg-
ative) slope corresponds to an instanton (anti-instanton).

We consider a prototype nonlinear dynamical system
driven by an external (stochastic) forcing f

∂tφ + N(φ) = f , (1)

where N(φ) represents the sum of linear and nonlinear in-
teractions with the highest nonlinearity of n. For simplic-
ity, we take the statistics of the forcing in Eq. (1) to be
Gaussian with delta-correlation in time as follows:

〈 f (x, t) f (x′, t′)〉 = δ(t − t′)κ(x − x′) , (2)

and 〈 f 〉 = 0. For Gaussian statistics with a vanishing first
moment, the prescription for the second moment given by
Eq. (2) is sufficient, simply because all odd moments van-
ish while even moments can be expressed as a product of
second moments. Note that, even if the forcing is Gaus-
sian, φ statistics can be non-Gaussian because of the non-
linearity of the dynamical equation. An equivalent way of
prescribing the second moment (Eq. (2)) for the Gaussian
forcing is to introduce the PDF of f as follows [23]:

d[ρ( f )] = D f e−
1
2

∫
dxdx′dt f (x,t)κ−1(x,x′) f (x′,t). (3)

This is a generalization of a Gaussian distribution to a con-
tinuous variable f (x, t). The average value of a quantity Q
is then computed as

〈Q〉 =
∫

d[ρ( f )] Q , (4)
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where the angle brackets 〈〉 represent the average over the
statistics of the forcing f . From Eq. (3), we construct
the PDFs of flux, which are the m multiple products of φ
(that is, the mth moment). In the following, we call M(φ)
the “observable,” since we are interested in measuring its
PDFs. The PDFs of M(φ) to take a value of R can then be
represented in terms of a path integral as follows:

P(R) = 〈δ(M(φ) − R)〉
=

∫
dλeiλR

〈
e−iλM[φ]

〉

=

∫
dλeiλRIλ , (5)

where
Iλ =

〈
e−iλM[φ]

〉
.

By taking Q[φ] = exp [−iλM[φ]] in Eq. (4) and using
Eq. (3), we can rewrite Iλ in terms of a path integral as

Iλ =
∫
DφDφ e−S λ , (6)

where S λ is the effective action given by

S λ = −i
∫

dxdtφ[∂tφ + N(φ)]

+
1
2

∫
dxdx′dtφ(x)κ(x − x′)φ(x′)

+ iλ
∫

dtM(φ)δ(t) . (7)

In Eq. (7), φ is the conjugate variable to φ, introduced to
impose the constraint given by the equation of motion of φ
in Eq. (1) in the form

N =
∫

Dφ exp

{
i
∫

dxdtφ[∂tφ + N(φ) − f ]

}
,

with a normalization constant N. Although φ appears to be
simply a convenient mathematical tool, it does have a use-
ful physical meaning: it arises from the uncertainty in the
value of φ due to stochastic forcing. That is, the dynami-
cal system with a stochastic forcing should be extended to
a larger space involving this conjugate variable, whereby
φ and φ constitute an uncertainty relationship (see Fig. 3).
The instanton solution is a particular path out of all pos-
sible (functional) values of φ and φ which minimizes the
action S λ. Furthermore, the conjugate variables have the
interesting physical property of mediating the forcing κ and
the flux M(φ) (oberservable) whose PDFs are sought (see
Fig. 4).

3.1 Instanton solution
The key concept underlying the instanton method is

that coherent structures that are localized in time are re-
sponsible for the rare events of large amplitude, causing
strong intermittency in the PDF tails with possibly signifi-
cant transport. Assuming that such a coherent structure has
a spatial profile φ0(x) and a temporal evolution governed

Fig. 3 Uncertainty in φ = F(t)φ0 and φ = μ(t)φ (or in F(t) and
μ(t)) due to stochastic forcing.

Fig. 4 Schematic diagram showing the relationship among the
PDFs of the observable M(φ), dynamical quantity φ, its
conjugate variable φ, and the stochastic forcing with the
correlation function κ(x − x′) (see Eq. (2)).

by F(t) as φ(x, t) = φ0(x)F(t), and similarly φ = φ0(x)μ(t),
we can rewrite the action S λ and minimize it with respect
to F and μ to obtain equations for F and μ. Since the
instanton φ propagates forward in time and its conjugate
variable φ backward in time while the PDF is computed at
t = 0, the boundary conditions on F and μ are (see also
Fig. 3):

F(−∞) = 0 , (8)

μ(t > 0) = 0 . (9)

To make further progress, we need to specify the profile
of φ0. The key question is thus “what should we use
for φ0?” or, alternatively, “what are the possible coher-
ent structures that are likely to form in a given nonlinear
system?” As noted previously, exact solutions to nonlin-
ear equations that tend to be supported naturally are exam-
ples of such structures. In the presence of stochastic forc-
ing, these structures can readily be created, being local-
ized in time. Ramps in Burgers equations, and modons in
Hasagawa-Mima and ITG turbulence models are examples
of such coherent structures. In the presence of stochastic
forcing, these structures are likely to form and decay with
a short lifetime. By using the profiles of these structures
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and expanding the correlation functions in terms of those
as

κ(x − y) ∼ κ0
∑
m,n

φm
0 (x)φn

0(y),

where κ0 is the strength of forcing, we can, in principle,
cast the action in terms of a time-integral only. Schemati-
cally, computation of the PDFs then requires the following
main steps:
I. Minimize S λ with respect to μ and F to obtain the
equation of motion for F and μ.
II. Solve those equations with the boundary conditions
(Eqs. (8) and (9)) to compute optimal paths.
III. Use those solutions to obtain the minimum action S λ.
IV. Evaluate λ integral in Eq. (5) to find the PDFs.

4. PDFs of Structure Formation in
ITG Turbulence
This section predicts the PDFs of structure formation

in ITG turbulence by the preceding steps. As a specific ex-
ample, we investigate the PDFs of the formation of zonal
flows. Since zonal flows are self-driven from turbulence
by Reynolds stress, this problem is closely related to the
PDF of momentum flux. We thus consider the PDFs of
momentum transport and zonal flow formation. The PDFs
of the local Reynolds stress in Hasagawa-Mima [25, 26]
and toroidal ITG turbulence models were investigated by
Kim et al. [27,28]. In the following, we consider a slightly
different ITG model and compute the PDFs of (global) mo-
mentum flux and zonal flow formation [29, 30]. Specifi-
cally, we model ITG turbulence using the continuity and
temperature equation for the ions, assuming Boltzmann
electrons, and ignoring the effects of parallel ion motion,
magnetic shear, trapped particles, and finite beta on the
ITG modes [31]. We incorporate the effect of an imposed
poloidal shear flow in the time-evolution equations for the
background fluctuations in the form of sheared velocity V0.
The main governing equations are given by

∂tn −
(
∂t − αi∂y

)
∇2
⊥φ + ∂yφ +

[
φ, n

]
+ ν∇4φ

+V0∂y
(
1 − ∇2

⊥
)
φ − εngi∂y (φ + τ (n + Ti))

=
[
φ,∇2

⊥φ
]
+ τ

[
φ,∇2

⊥ (n + Ti)
]
+ f ,

(∂t + V0∂y)Ti − 5
3
τεngi∂yTi +

(
ηi − 2

3

)
∂yφ

−2
3

(∂t + V0∂y)n = −[φ,Ti] +
2
3

[φ, n].

(10)

Here, f is the forcing, and V0 is an imposed shear flow.
Notations are standard: [A, B] = (∂xA)(∂yB) − (∂yA)(∂xA);
n = (Ln/ρs)δn/n0 is the normalized ion particle density;
φ = (Ln/ρs)eδφ/Te is the eletrostatic potnetial; Ti =

(Ln/ρs)δTi/Ti0 the ion temperature; τ = Ti/Te; ρs = cs/Ωci

where cs =
√

Te/mi; Ωci = eB/mic; ν is collisional-
ity; LT = − (dlnT/dr)−1, and Ln = − (dlnn/dr)−1; ηi =

Ln/LTi , εn = 2Ln/R̄ where R̄ is the major radius; and
αi = τ (1 + ηi). Length scale and time are normalized by ρs

and Ln/cs, respectively. The geometrical quantities are cal-
culated in the strong ballooning limit (θ = 0, gi (θ = 0) = 1,
with ω� = kyv� = ρscsky/Ln). Physically, the forcing f
is envisioned to arise from the instability of toroidal ITG
modes due to unfavorable magnetic curvature, or an exter-
nal particle source.

We assume that a coherent structure responsible for
the PDF tails has the spatial profile given by modons prop-
agating with speed U in the local poloidal y direction as
φ0(x, y) = φ0(x, y − Ut) (for example, [26]). Further-
more, we assume a linear relationship between φ and Ti

as Ti = χφ with

χ =
ηi − 2

3 (1 − U + V0)

U − V0 +
5
3τεngi

.

The coupled equations (10) then effectively reduce to one
equation for φ with the nonlinear interaction term N[φ] in
Eq. (7) given by

N[φ] = −(∂t − αi∂y)∇2
⊥φ + V0(1 − ∇2

⊥)φ

+(1 − εngiβ)∂yφ − β[φ,∇2
⊥φ] + ν∇4φ, (11)

where β = 1 + τ + τχ. By substituting Eq. (11) in S λ and
using φ = F(t)φ0, we obtain the effective action S λ as a
function of F(t) and φ̄(x, t). We note that for a nonlinear
modon solution to exist, the ITG mode should be linearly
unstable (for example, [32]).

4.1 Momentum flux
We first consider the observable to be momentum flux

M[φ] = 〈vxvy〉 =
〈
−∂φ
∂x
∂φ

∂y

〉
, (12)

where angle brackets 〈〉 denote spatial average, and com-
pute the PDFs of the momentum flux M[φ] to take a value
of R (that is, P(R)).

By substituting Eq. (12) into S λ Eq. (7) with φ =
F(t)φ0, and following Sect. 3 Steps I-IV, we obtain the de-
sired PDFs of the momentum flux P(R) as

P(R) ∼ exp{−c1R3/2}, (13)

where c1 is a constant that depends on the profile of the
coherent structure (modon) and the values of the physi-
cal parameters (U − V0, ηi, τ, etc). Equation (13) clearly
shows that the PDF tails are strongly intermittent with ex-
ponential scaling exp (−cR3/2). Our prediction thus offers
a powerful mechanism for ubiquitous exponential scal-
ings observed experimentally (for example, [10–13]). No-
tably, exactly the same exponential scaling exp (−cR3/2) of
Reynolds stress was reported in [11]. Of particular impor-
tance, we find that the PDF is enhanced over the Gaussian
prediction exp (−cR2), highlighting the importance of in-
termittency in understanding momentum transport. Simi-
lar exp (−cR3/2) was also obtained in the PDFs of local mo-
mentum flux and heat flux in Hasagawa-Mima and toroidal

030-4



Plasma and Fusion Research: Regular Articles Volume 4, 030 (2009)

ITG turbulence models [27,28]. These results follow from
the fact that (i) the highest nonlinearity in our model is
quadratic and (ii) the observable is the second-order mo-
ment (momentum flux) [33]. Were it not for a linear re-
lationship between Ti and φ, a different exponential scal-
ing would have followed. On the other hand, the constant
c1 depends on the spatial profile of the coherent structure
(modons), U − V0, and other physical parameters (ηi, τ,
etc.), which is investigated in detail in [30].

4.2 Zonal flow formation
We consider zonal flows, driven by Reynolds stress

(momentum flux), as

∂φZF(t)
∂t

= −〈vxvy〉 . (14)

To include the dynamics of zonal given in Eq. (14), we
need to introduce the conjugate variable for zonal flows
as φ̄ZF. The additional contribution from zonal flows to the
action S λ is then given by

ΔS λ = −i
∫

dtφ̄ZF(t)

(
∂φZF(t)
∂t

+ 〈vxvy〉
)
. (15)

To compute the PDFs of zonal flows, we consider the ob-
servable to be zonal flows

M[φZF] = φZF . (16)

By incorporating ΔS λ (Eq. (15)), substituting Eq. (16) into
Eq. (7), and following Sect. 3 Steps I-IV, we obtain PDFs
of zonal flows to take the value of R (that is, P(R)) as fol-
lows:

P(R) ∼ exp{−c2R3}. (17)

Here, c2 is the model-dependent constant that determines
the amplitude of the PDFs. The exponential scaling in
Eq. (17) again indicates a strong intermittency in the tails.
The exact scaling here follows from the fact that (i) the
highest nonlinearity in our model is quadratic and (ii) the
observable is the first order moment (zonal flow). Note
that, for the same reason, a similar exp (−cR3) scaling was
found in the tails of the PDFs of positive velocity gradients
in Burgers turbulence [18]. While the exponential scaling
is robust, the amplitude of the PDFs rather sensitively de-
pends on parameter values in the model through the value
of the constant c2 [30, 33]. Similar exponential PDFs are
thus expected when the effect of toroidal coupling is incor-
porated, with the same (quadratic) highest nonlinearity in
Eq. (10). The toroidal effect will however change the over-
all amplitude of PDFs by effectively altering the forcing
strength (κ0).

Note that, in this model, the back reaction of zonal
flows is neglected, by assuming an imposed shear flow.
Computation of the PDFs in a more consistent model is
in progress where zonal flows are treated dynamically by
allowing them to modify the evolution of fluctuations. Fi-
nally, note that a simplified 1D model for a shear flow

has been proposed in terms of a nonlinear diffusion equa-
tion, where a shear flow is driven by a stochastic forcing
while damped through a nonlinear diffusion of the form
D(ux) = γu2

x [34]. Here, ux = ∂xu; γ is constant. Analysis
of this model was recently done by [35].

4.3 Summary
The instanton method predicts exponential PDFs of

momentum flux (second moments) and structure formation
(first moments) with exp (−cR3/2) and exp (−c2R3) scal-
ings, respectively. Our theory thus explains similar ex-
ponential PDF tails often observed in various tokamaks
[11–13]. Furthermore, we can show that PDFs of higher
moments such as 〈nvxvy〉 have exponential PDFs that are
much more enhanced compared to the Gaussian distribu-
tion, possibly explaining the numerical results in [10].

5. Discussions and Conclusion
We presented a statistical theory of turbulence and in-

termittency that is rather insensitive to the details of a dy-
namical system and depends on only the highest nonlinear
interaction. The method is motivated by various experi-
mental results that show that coherent structures tend to
arise from complex, multi-scale interactions in plasmas,
manifesting a tendency toward self-organization. These
coherent structures are often associated with bursty events,
causing a significant transport, such as, for instance, ham-
pering plasma confinement in laboratory plasmas. This
empirical fact is built into the instanton method, employed
for our study. The predicted scaling is exponential, offer-
ing a powerful mechanism to explain similar exponential
PDF tails observed in various tokamaks [11–13].

The instanton method is not a new theory; it was orig-
inally introduced in quantum field. However, it appears
to be a useful technique for examining plasma turbulence,
with much scope for further investigation. While the lead-
ing order prediction of instantons is limited to exponential
PDFs, there is much hope that extension of this method
will give more diverse scaling predictions, including the
combination of exponential and power-law, power-law, etc
that can explain not only the tails but the form of the PDFs
near the center. Note that in Burgers turbulence, the left
tail of the PDF for the velocity difference due to shocks
satisfies a power-law scaling.

The few steps to improve the present predictability
of the instanton method include: (i) keep contributions
from the perturbations around the instanton (that is, the
higher-order corrections in the action and path integral); in
other words, incorporate both coherent structures and fluc-
tuations (turbulence); (ii) incorporate contributions from
anti-instantons (see Fig. 2), multi-instantons, and multi-
structures; (iii) generalize the method to account for a
finite-correlation time of the forcing and for non-Gaussian
statistics; and (iv) derive consistently the forcing that may
arise from some instabilities in a system, rather than taking
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it to be given. These improvements are expected to provide
a theoretical framework in which a broad range of exper-
imental data, including finite size scaling with power-law
PDFs [36], can be understood. Finally, while the exact
value of the PDF amplitude requires knowledge of the spa-
tial form of coherent structures (for example, exact nonlin-
ear solutions), a good estimate can be obtained by finding
an approximate nonlinear solution, or by empirically con-
structing it from numerical or experimental results even if
the exact form may not be available.
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