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Astrophysical accretion is arguably the most prevalent physical process in the Universe; it occurs during the
birth and death of individual stars and plays a pivotal role in the evolution of entire galaxies. Accretion onto a
black hole, in particular, is also the most efficient mechanism known in nature, converting up to 40% of accreting
rest mass energy into spectacular forms such as high-energy (X-ray and gamma-ray) emission and relativistic
jets. Whilst magnetic fields are thought to be ultimately responsible for these phenomena, our understanding of
the microphysics of MHD turbulence in accretion flows as well as large-scale MHD outflows remains far from
complete. We present a new theoretical model for astrophysical disk accretion which considers enhanced vertical
transport of momentum and energy by MHD winds and jets, as well as transport resulting from MHD turbulence.
We also describe new global, 3D simulations that we are currently developing to investigate the extent to which
non-ideal MHD effects may explain how small-scale, turbulent fields (generated by the magnetorotational insta-
bility — MRI) might evolve into large-scale, ordered fields that produce a magnetized corona and/or jets where
the highest energy phenomena necessarily originate.
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1. Introduction
It is widely accepted that high-energy astrophysical

sources such as active galactic nuclei (AGN), gamma-ray
bursts and some X-ray binaries are powered by accre-
tion of matter onto a central black hole. Since the stan-
dard theory of astrophysical disk accretion was formulated
over 30 years ago [1, 2], arguably the most important ad-
vance in our understanding of the process by which mat-
ter in the disk can shed its angular momentum and re-
lease its gravitational binding energy has come from com-
putational modelling. Numerical simulations demonstrate
unequivocally that the magnetorotational instability (MRI,
[3–6]) can produce magnetohydrodynamic (MHD) turbu-
lence and enhanced angular momentum transport (see [7]
for a review). The presence of even a very weak magnetic
field is the key ingredient: it completely changes the dy-
namics from a keplerian flow which is hydrodynamically
stable even at high Reynolds numbers (as recently verified
experimentally [8]) to one which is unstable to the rapid
growth of MHD modes leading to turbulence in the non-
linear regime.

It is over 20 years since the first MHD simulations
of astrophysical accretion flows were carried out [9, 10].
Notwithstanding the important advances made to date [5,
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11–19], numerical simulations have so far been unable to
resolve two key outstanding issues:

1. How are the high rates of mass accretion inferred in
the most powerful sources achieved?

2. How are the outflows and jets observed across the
mass spectrum of accreting sources produced?

In what follows, we briefly address each of these open
questions and suggest how they may be connected and mu-
tually resolved by a generalized model for MHD disk ac-
cretion.

The most powerful accreting sources (i.e. quasars and
other active galaxies) are fuelled by accretion onto a su-
permassive (106−9 M�) black hole. They produce radiative
luminosities that can exceed those of normal galaxies by
several orders of magnitude (e.g. up to 1048 erg s−1), in-
dicating mass accretion rates which can exceed 100 solar
masses per year (1 M�yr−1 ≈ 6×1025 g s−1). This is strictly
a lower limit because accretion can also drive mechanical
outflows, in some cases with inferred kinetic powers that
are considerably greater than the observed radiative lumi-
nosity (e.g. the famous M87 jet — see [20] and references
therein). Indeed, the fact that collimated jets are observed
across a wide range of accreting sources (see [21] for a
review), including those that are non-relativistic (e.g. pro-
toplanetary systems, young stellar objects, see Fig. 1, and
neutron stars, see especially [22]), suggests that accretion

c© 2009 The Japan Society of Plasma
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Fig. 1 Hubble Space Telescope optical images of jets in young
stellar objects. Photo credits: C. Burrows, J. Morse
(STScI), J. Hester (AZ State U.), NASA.

provides an effective, generic mechanism for powering jets
and other energetic plasma outflow phenomena.

Magnetic fields are required to collimate jet plasma
and to account for the observed radio synchrotron jet emis-
sion. MHD simulations have revealed that a net poloidal
component of the magnetic field, Bz, is required to pro-
duce winds and jets from an accretion disk (see [23] for
a review). Interestingly, high mass accretion rates can
only be achieved in the simulations if a large-scale MHD
outflow is present (e.g. [12, 17]). It is particularly note-
worthy that comparably high accretion rates cannot be
achieved through MRI-driven MHD turbulence alone, de-
spite the fact that the effective turbulent viscosity is “en-
hanced” relative to kinematic fluid shear viscosity (e.g.
[11, 13, 14]). Therefore, magnetized jets (and by implica-
tion, MHD outflows in general) must be primarily respon-
sible for truly enhanced transport in astrophysical accre-
tion flows. This conclusion is consistent with early analyt-
ical models [24, 25] proposing that accretion is facilitated
by the vertical transport of angular momentum resulting
from MHD torques on the disk surface. It is also consis-
tent with non-ideal MHD simulations indicating that ra-
dial transport of angular momentum by turbulent stresses
may be restricted to interior regions near the disk midplane
only [26].

Although MHD simulations indicate that a poloidal
field component is essential for launching accretion disk
jets [27], it is not yet clear how such a field component
arises in the case of accretion onto black holes, which have
no intrinsic magnetic moment. The magnetic flux in the
disk must originate from the random field in the interstel-
lar medium (or from the companion star in the case of
a black hole X-ray binary). This field is then amplified
into a dominant toroidal configuration in the disk by the
MRI. Simulations have yet to demonstrate the feasibility
of creating large-scale fields via an inverse cascade pro-
cess involving either stochastic reconnection of turbulent
fields [28] or reconnection of buoyant flux loops emerging

from the disk surface [29]. Models which require a pri-
ori large-scale flux loops [30–32], a poloidal B field (e.g.
[16]) or a spinning black hole ([18, 33]) to produce jets
are too restrictive to explain the observed ubiquity of jets
and outflows across the wide range of accreting systems.
One of the most interesting numerical results to date is that
of Machida and Matsumoto [19]. Their global 3D simula-
tions show the evolution of a large-scale poloidal field from
an initially weak toroidal field. However, no simulation to
date has shown an initial random field in a generic accret-
ing system evolve into a configuration favourable for jet
production. Similarly, while Machida et al. [34] have stud-
ied the effect of radiative cooling on optically thin black
hole accretion flows, no simulations to date have shown
the effect of optically thick radiative cooling on the global,
3D evolution of the magnetic fields.

We are developing new global 3D MHD simulations
to directly confront this challenging problem and obtain
new insights into the evolution of magnetic field topology
in black hole accretion flows. We aim to test our hypothe-
sis that turbulent reconnection and resistive dissipation, as
well as radiative losses by the plasma, play pivotal roles
in the evolution and steady-state properties of MHD ac-
cretion flows. We suggest that the microphysics of MHD
accretion can govern large-scale, macrophysical phenom-
ena that ultimately determine the observational appearance
and hence, classification, of accreting black hole sources.

Numerical approaches to date have been limited by
one or more of the following drawbacks: the use of the
shearing box approximation (see, e.g., [35, 36] for some
limitations of this approach); use of a non-conservative nu-
merical scheme (e.g. [37]) resulting in unphysical levels of
numerical dissipation which prevent a quantitative analysis
of energy transport; neglect of finite resistivity making it
difficult to realistically model magnetic reconnection; and
neglect of radiation, resulting in the unphysical situation
where heat generated in the disk at the end of a turbulent
cascade cannot be radiated away, so the disk puffs up. This
also makes it impossible to compare model results against
observations of luminosity and spectrum.

To implement our model, we are using and extend-
ing FLASH1 [38], the public MHD code developed at the
University of Chicago. FLASH provides the following fea-
tures which make it well suited to our model: it implements
adaptive mesh refinement (AMR); it solves the equations
of MHD in conservation form thus explicitly conserving
energy; it uses a modified piecewise-parabolic method
(PPM [39, 40]) which is significantly more accurate than
some other widely used codes (e.g. [37]); it uses the con-
strained transport method [41] to enforce divergence free
magnetic fields; and it is modular and extensible, allowing
us to develop a radiation MHD module. As such it repre-
sents the next generation of MHD codes.

The organization of this paper is as follows. In Sec. 2,

1FLASH is freely available at http://flash.uchicago.edu.
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Fig. 2 A schematic illustration of the inner regions of an MHD accretion flow around a black hole. β is the usual plasma beta (the ratio
of gas to magnetic pressures). The wind can drive mass loss from the disk, while the jet may be dominated by Poynting flux.

we briefly review an analytic model for turbulent MHD
black hole disk accretion that forms the theoretical basis
for our numerical investigations. In Sec. 3, we describe the
simulations we are currently developing, including non-
ideal MHD effects and radiation. We present some con-
cluding remarks in Sec. 4.

2. MHD Disk Accretion Theory
The analytical foundation for our approach is based

on the model of Kuncic and Bicknell [42]. This model em-
ploys a mass-weighted statistical averaging of the MHD
equations to obtain a mean-field description of turbulent
MHD disk accretion that is steady-state and axisymmet-
ric in the mean. Angular momentum and energy are trans-
ported radially outwards by turbulent Maxwell stresses and
vertically outwards by a large-scale MHD wind and/or jet.
The inner region of the black hole accretion disk is also
surrounded by and magnetically coupled to a hot, diffuse
corona, analogous to the solar corona.

Two important observational predictions of the model
are: 1. The disk emission spectrum is degraded by the
electromagnetic extraction of gravitational binding energy
from the accreting matter (see [43, 44]); and 2. The pres-
ence of a magnetized jet substantially enhances the rate of
mass accretion in the disk and hence, the rate of black hole
growth, resulting in a correlation between black hole mass
and radio emission (see [45]). The model is schematically
illustrated in Fig. 2. The main results pertinent to our simu-
lations are summarised below — more details can be found
in the original paper [42].

2.1 Statistical averaging
In the mass-weighted statistical averaging approach,

all variables are decomposed into mean and fluctuating
parts, with intensive variables such as velocity u mass av-

eraged according to

vi = ṽi + v
′
i , 〈ρv′i〉 = 0 , (1)

while extensive variables such as density ρ, pressure p and
magnetic field B, are averaged the following way:

ρ = ρ̄ + ρ′, 〈ρ′〉 = 0 , (2)

p = p̄ + p′, 〈p′〉 = 0 , (3)

Bi = B̄i + B′i , 〈B′i〉 = 0 . (4)

For clarity, in the following equations the tilde and bar
have been omitted from the averaged intensive and exten-
sive variables, respectively: averaged quantities are implic-
itly assumed. We consider below only the simplest case
where B̄i = 0, although it is straightforward to generalize
to the case with a nonzero net mean magnetic field. We
have also omitted negligible correlation terms2.

2.2 Mass transfer
Integration of the mean-field continuity equation gives

Ṁa(r) + Ṁw(r) = constant = Ṁ , (5)

where Ṁa(r) is the mass accretion rate and Ṁw(r) is the
mass outflow rate associated with a mean vertical velocity
at the disk surface, i.e. at the base of a disk wind. Under
steady-state conditions, the radial mass inflow decreases
towards small r at the same rate as the vertical mass out-
flow increases in order to maintain a constant net mass flux,
Ṁ, which is the net accretion rate at r = ∞.

2In particular, triple correlation terms of the form 〈ti jv
′
j〉 are assumed

negligible compared to analogous correlations with the mean fluid veloc-
ity 〈ti j〉ṽ′j.
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2.3 Momentum transfer
Statistical averaging of the momentum equation yields

∂(ρvi)
∂t
+
∂(ρviv j)

∂x j

= −ρ∂φG

∂xi
− ∂p
∂xi
+
∂

∂x j

(
tR
i j + 〈tB

i j〉
)
, (6)

where φG = −GM(r2 + z2)−1/2 is the gravitational potential
of the central mass M, tR

i j = −〈ρv′iv′j〉 is the Reynolds stress,
and the turbulent Maxwell stress is

〈tB
i j〉 = 〈

BiBj

4π
〉 − δi j〈B

2

8π
〉 . (7)

Integration of the azimuthal component of the mo-
mentum equation yields

Ṁavφr − Ṁa(ri)vφ(ri)ri

= − 2πr2Trφ + 2πr2
i Trφ(ri)

+

∫ r

ri

[
vφr

dṀa

dr
− 4πr2〈tφz〉+

]
dr , (8)

where quantities calculated at the disk surface are denoted
by a ‘+’ superscript, ri denotes the radius at the innermost
stable circular orbit and

Trφ =

∫ +h

−h
〈trφ〉dz (9)

is the rφ component of the Maxwell stress integrated over
the vertical scaleheight h.

The left hand side of Eq. (8) describes the change in
angular momentum flux associated with inflow from an
outer radius r to ri. The first two terms on the right hand
side describe the rate of radial transport of angular mo-
mentum due to MHD stresses in the disk. The terms in the
integrand on the right hand side describe the vertical trans-
port of angular momentum resulting from mass loss in a
wind and an MHD torque on the disk surface, respectively.
These effects are not modelled in standard accretion disk
theory. In summary, the model we consider includes con-
tributions from both radial and vertical transport of angular
momentum to the overall mass accretion rate: angular mo-
mentum is transported radially outwards by internal MHD
stresses and vertically outwards by both mass outflows and
MHD stresses acting over the disk surface.

Previous simulations [12, 17, 26] as well as semi-
analytic models (e.g., [46]) show that in the presence of
a large-scale, open, mean magnetic field, angular momen-
tum is transported at small disk radii more efficiently in the
vertical direction by large-scale magnetic torques (Poynt-
ing flux) than radially by MHD turbulence. Our simula-
tions will compare the contribution from these processes
as well as from the vertical transport of angular momen-
tum by mass outflows.

2.4 Energy transfer
Accretion extracts gravitational binding energy from

the accreting matter and converts it into mechanical (e.g.

kinetic, Poynting flux) and non-mechanical (e.g. radiative)
forms. The rate at which this occurs is determined by
the keplerian shear in the bulk flow, srφ =

1
2 r∂Ω/∂r, with

∂Ω/∂r = − 3
2Ω/r.

The rate per unit disk surface area at which energy is
emitted in the form of electromagentic radiation is deter-
mined by the internal energy equation:

∂u
∂t
+
∂

∂xi

(
uvi + 〈uv′i〉

)
≈ − pvi,i − 〈pv′i,i〉 − 〈Fi,i〉

+ 〈 J
2

σ
〉 + 〈tv

i jv
′
i, j〉 , (10)

where u is the gas plus radiation energy density, F is the
radiative flux, J is the current density, and tv

i j is the viscous
stress tensor. The terms on the left hand side describe the
total rate of change of gas plus radiation energy density
and the terms on the right hand side describe work done
by compression in the flow against the gas and radiation
pressure, radiative losses, mean field ohmic heating, and
viscous dissipation (heating). The last term requires some
comment since the molecular viscosity in the mean flow is
generally considered negligible in accretion disks. How-
ever, at the high-wavenumber end of a turbulent cascade,
it can become important in converting the turbulent energy
into heat. The viscous stress tensor is

tv
i j = 2νρsi j , (11)

where ν is the coefficient of kinematic shear viscosity and
si j is the shear tensor:

si j =
1
2

(
vi, j + v j,i − 2

3
δi jvk,k

)
. (12)

The source terms determine the rate at which energy
is converted into random particle energy (some of which is
then converted into radiation) and into bulk kinetic energy.
If there are negligible changes in the internal energy of the
gas and the turbulent energy is dissipated at the end of a
turbulent cascade at a rate equivalent to its production, then
Eq. (10) implies that the disk radiative flux emerging from
the disk surface is

F+d ≈
1
2

Trφr
∂Ω

∂r
= −3

4
TrφΩ . (13)

The level of these turbulent MHD stresses available
to dissipate the internal energy in turn depends on how ef-
ficiently the gravitational binding energy extracted by ac-
cretion is converted into other forms (both mechanical and
non-mechanical). That is, Trφ is determined by the angular
momentum conservation equation (c.f. 8):

−Trφ(r) =
Ṁavφr

2πr2

[
1 − Ṁa(ri)

Ṁa(r)

( ri

r

)1/2
]

−
( ri

r

)2
Trφ(ri)

− 1
2πr2

∫ r

ri

[
vφr

dṀa

dr
− 4πr2〈tφz〉+

]
dr. (14)
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Substituting this into (13) yields the following more gen-
eral solution for the disk radiative flux:

F+d (r) ≈ 3GMṀa(r)
8πr3

[
1 − Ṁa(ri)

Ṁa(r)

( ri

r

)1/2
]

− 3
4

( ri

r

)2
Trφ(ri)Ω

− 3Ω
8πr2

∫ r

ri

[
vφr

dṀa

dr
− 4πr2〈tφz〉+

]
dr. (15)

This is the generalized solution for the radiative flux
of a turbulent MHD accretion disk. It can be expressed as

F+d (r) ≈ 3GMṀa(r)
8πr3

[ fa(r) − fw(r)] , (16)

where

fa(r) =

[
1 − Ṁa(ri)

Ṁa(r)

( ri

r

)1/2
]
− 2πr2

i Trφ(ri)

Ṁa(r)r2Ω
(17)

is a dimensionless factor that parameterizes the available
accretion energy flux, the last term describing the rate at
which MHD stresses at the innermost stable circular orbit
locally dissipate turbulent energy, and

fw(r) =
1

Ṁa(r)r2Ω

×
∫ r

ri

[
vφr

dṀa

dr
− 4πr2〈tφz〉+

]
dr (18)

is the fractional rate of vertical energy transport from the
disk (the ‘w’ subscript denoting a wind). This is a correc-
tion factor which takes into account partitioning of accre-
tion power into non-radiative forms.

Note the difference between this model and standard
disk accretion theory [1]. In the latter, all the gravitational
binding energy is locally dissipated and assumed to be con-
verted to radiation: dṀa/dr = 0 and 〈tφz〉+ = 0 so that
fw = 0. This difference will be manifested by a disk
spectrum which differs from that predicted by the standard
model since the local disk temperature T (r) is reduced if
energy is channelled away by outflows from the disk sur-
face. This will affect the emission spectrum arising from
the innermost regions of the disk, where the temperature is
highest and where jets and outflows originate. Assuming
local blackbody emission, the disk luminosity spectrum
can be calculated by summing up the contributions from
each annulus:

Ld,ν = 2
∫ ∞

ri

πBν[T (r)] 2πr dr , (19)

where Bν is the Planck function, T (r) = [F+d (r)/σ]1/4 is
the effective disk temperature of each annulus and σ is the
Stefan-Boltzmann constant. We expect the disk radiative
efficiency to be lower than the canonical 
 10% predicted
by the standard model when vertical transport of angular
momentum is important. The radiative efficiency is given

by the ratio of disk luminosity to accretion power: Ld/Pa.
The total accretion power is calculated from

Pa = 2
∫ ∞

ri

3GMṀa(r)
8πr3

fa(r) 2πr dr . (20)

If there is no wind mass loss from the disk, so that
Ṁa is constant, this reduces to the familiar result Pa =
1
2GMṀa/ri ≈ 1

12 Ṁac2, in the Newtonian approximation
for a nonrotating black hole.

3. MHD Accretion Simulations
As described earlier, there is a real need for a new

program of MHD simulations to advance our knowledge
of accreting black hole systems. Our numerical work is
motivated by the following:

1. We need to explain the macrophysics of observed
phenomena in AGN and other accreting systems, viz.,
high mass accretion rates and jets/winds, and test the
hypothesis that they are related by large-scale MHD
processes.

2. We need to improve our understanding of the mi-
crophysics in order to explain how small-scale, lo-
cal MHD processes can evolve into large-scale, global
phenomena.

3. We need to explicitly calculate the radiation emitted
by a black hole accretion disk in order to directly
compare against the observational data.
FLASH solves the time-dependent equations of com-

pressible non-ideal MHD. In non-dimensional conserva-
tion form these are:

∂ρ

∂t
+ ∇ · (ρu) = 0 (21)

∂(ρu)
∂t
+ ∇ · (ρuu − BB) + ∇p + ∇

(
B2

2

)

= ρg + ∇ · ¯̄tv (22)

∂(ρE)
∂t
+ ∇ ·

[
u

(
ρE + p +

B2

2

)
− B(u · B)

]

= ρg · u + ∇ · (u · ¯̄tv
+ κ∇T )

+ ∇ · [B × (η∇ × B)] (23)
∂B
∂t
+ ∇ · (uB − Bu)

= −∇ × (η∇ × B) (24)

where

E =
1
2
v2 + ε +

1
2

B2

ρ
(25)

is the specific total energy, ε is the specific internal energy,
¯̄tv is the viscous stress tensor, g is the gravitational force per
unit mass, κ is the heat conductivity, and η is the resistivity.

FLASH implements a Direct Eulerian PPM solver
[39, 40]. The constrained transport method [41] is used to
enforce divergence-free magnetic fields.
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3.1 Global 3D simulations
MHD simulations of the MRI in accretion disks are

often conducted in a shearing box approximation due to the
high resolution required to model MHD turbulence. How-
ever, this approach can introduce complications and pitfalls
including a limited spatial scale for the simulations, side-
effects of the shearing box symmetry and artifacts from the
application of periodic boundary conditions [35] as well as
an aspect ratio dependence for MRI channel solutions [36].
We are now at a stage where high resolution global 3D sim-
ulations are possible and this is the approach we will take.

3.2 Non-ideal MHD
In the disk model of Kuncic and Bicknell [42], jets

and/or winds are primarily responsible for transporting the
angular momentum necessary for accretion to proceed at
a rate consistent with observations of the most powerful
astrophysical sources. We will test the hypothesis that
the large-scale poloidal magnetic fields necessary for these
outflows may be self-consistently generated in the accre-
tion flow. Recent simulations [17] show that in the pres-
ence of an externally applied large-scale magnetic field,
angular momentum transport by the vertical (φz) Maxwell
stress is comparable to its radial (rφ) component. Magnetic
reconnections can have a significant influence on magnetic
field topologies [47, 48]. Notwithstanding the high degree
of ionisation of plasmas in the accretion disks of AGN
and X-ray binaries, we suggest that these reconnections
and non-ideal MHD effects in general cannot be neglected.
Even in numerical models that do not explicitly include
non-ideal effects, they can appear in the form of numeri-
cal resistivity which is difficult to control and quantify. By
explicitly modelling a finite resistivity, we will explore its
effect on the evolution of the magnetic field topology, par-
ticularly the emergence of a significant z-component which
is necessary to produce high mass accretion rates.

3.3 Radiation
The inclusion of radiation in our simulations is im-

perative for directly comparing to the observational data,
which is almost exclusively in the form of photons detected
in various wavebands. Most of the emission that charac-
terises quasars and other AGN is attributed to the putative
accretion disk and peaks at optical–ultraviolet spectral en-
ergies. Radiative transfer will also be required to transport
the internal energy dissipated in the disk plasma at the end
of a turbulent cascade, i.e. to cool the disk. To date, no
simulations have investigated the effect of optically thick
radiative cooling on the MRI in full global 3D. Including
radiation will also allow us to test whether the blackbody
emission from the disk is modified by outflows. In ad-
dition, it may be that regions of the disk where radiation
dominates may be thermally unstable [49], thus affecting
the dynamics.

Implementing radiation is computationally very de-

manding; numerically solving the full radiative transfer
problem in 3D is currently not feasible. Instead, a com-
mon approach is to average over frequency and solve the
equations in the flux-limited diffusion (FLD) approxima-
tion [50, 51], a technique which still allows one to approx-
imate the emergent spectrum. A “flux limiter” is used to
interpolate between the optically thin and optically thick
cases, giving a reasonable measure of the energy carried
away by radiation [52]. FLD has previously been imple-
mented in a shearing box in a reference frame co-moving
with the fluid (e.g. [37, 53]). Simulations show a stratified
disk in contrast to the standard model [54], and that radia-
tive diffusion dominates Poynting flux throughout the disk
and the upper layers are magnetically supported and in-
homogeneous, likely affecting the emergent thermal spec-
trum [55–57]. The implementation of MHD with FLD de-
scribed in [58] achieves energy conservation by using a
mixed-frame numerical scheme, evaluating radiation quan-
tities in the lab frame and fluid opacities in the co-moving
frame, thus enabling us to address radiation in a quantita-
tive way. The algorithm also provides improved speed and
accuracy compared to [37, 53].

Our goal is to calculate the steady-state emission spec-
trum of a turbulent MHD disk around a supermassive
black hole in the nucleus of a galaxy and to compare the
predicted spectrum with the observed optical spectra of
quasars (see, e.g., [43]).

4. Concluding Remarks
The publication of these proceedings coincides with

the 50th anniversary of the discovery of the MRI [3], which
has had such a profound impact on our understanding not
only of accretion disks — arguably nature’s most power-
ful energy source — but plasmas in general, ranging from
laboratory scales to galaxy scales. Further landmarks in
accretion disk theory came with the laying down of the
standard theory [1] in what remains the most cited paper
in all of astrophysics; the discovery that large scale mag-
netic fields can vertically transport matter, energy and mo-
mentum [24]; the first numerical MHD simulations [9,10];
as well as the rediscovery of the MRI in accretion disks
and the demonstration by numerical simulations that this is
indeed the MHD process anticipated by the analytic stan-
dard theory necessary to produce the turbulent radial trans-
port of energy and momentum [5, 6]. Despite these major
steps forward in assembling the components of a complete
accretion disk theory, we have not to date seen numeri-
cal simulations which can self-consistently produce all the
salient features of quasars and other high energy astrophys-
ical sources: high mass accretion rates, outflows, winds
and jets, the formation of a magnetised corona, and the ob-
served thermal spectrum.

We expect it will again be magnetic fields which will
hold the key to resolving these outstanding issues. To this
end, we are developing new 3D global MHD simulations
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to test the hypothesis that small-scale, stochastic fields can
self-consistently generate the large-scale poloidal mag-
netic fields necessary for the transport of energy and mo-
mentum from accreting matter necessary to produce each
of the above observed features. The analytical basis for
this generalized model was laid down by the companion
work [42] to our current numerical modelling, which the
rapid advances in computing power accompanied by new
codes and more efficient algorithms has now made possi-
ble.

It is an exciting time for accretion disk theory and for
our understanding of the microphysics that drives these and
other plasma systems in nature.
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