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This overview describes the confinement and structure of two-dimensional plasma crystals. Phonons and
Mach cones in monolayer systems can be used for diagnostic purposes. Three-dimensional plasma crystals
are found as multilayer systems or as Yukawa balls. The differences between Coulomb and Yukawa balls are
described by means of a simple model. Optical diagnostic methods for studying dynamical phenomena in three-
dimensional plasma crystals are discussed.
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1. Introduction
The formation of regular arrangements of charged par-

ticles in a confining potential well is known for a long
time from Thomson’s 1904 model of the atom [1]. Wigner,
in 1934, suggested that, by correlation effects, electrons
in a metal at zero temperature could settle into a body-
centered cubic crystal [2]. Ordered structures of electri-
cally charged, micrometer-sized aluminum particles in a
Paul trap were reported by Wuerker et al. in 1959 [3]. In
the 1960 s and 70 s, charged polymer particles in a col-
loidal suspension and interacting by screened Coulomb po-
tentials were detected by Bragg scattering to form crys-
talline structures [4–7]. Ordered Coulomb clusters consist-
ing of a few laser-cooled ions in a Paul trap were report-
eded in 1987 [8, 9]. Systems with large numbers of laser-
cooled ions in a Penning trap [10] or a Paul trap [11] exhib-
ited a shell structure as predicted by molecular-dynamics
simulations [12–14]. Crystallization in non-neutral plas-
mas was reviewed in Ref. [15]. The formation of ordered
arrangements of micrometer-sized particles (dust) in a gas
discharge plasma was predicted by Ikezi in 1986 [16] and
such “plasma crystals” were experimentally realized in
1994 [17–19]. Plasma crystals opened a new window
into the physics of strongly-coupled systems. Similar to
colloidal suspensions, the convenient size of the particles
allows direct observation of individual particle motion in
a many-particle system. However, particle friction in a
plasma can be made so low that dynamic phenomena be-
come accessible which are overdamped in colloidal sus-
pensions. Compared to trapped laser-cooled ions, the large
mass (of 3×1011 proton masses for a 10 µm diameter poly-
mer particle) reduces all characteristic frequencies into the
range f < 100 Hz, which is easily accessible with fast
videocameras.
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This article describes the physical processes that de-
termine the structure and the dynamical properties of two
and three-dimensional plasma crystals. Due to the limited
space, the discussion emphasizes experimental findings.

2. Plasma Crystals
A plasma crystal is an assembly of electrically

charged micrometer-sized particles (“dust”) in a gas dis-
charge plasma. These particles carry a few thousand el-
ementary charges. Under typical laboratory conditions in
radio frequency discharges, dust particles of about 5 µm di-
ameter or larger are too heavy to be levitated by the weak
ambipolar field inside the plasma volume. Rather, the par-
ticles sediment into the sheath region before an electrode,
where the time-averaged electric field E is strong enough
to balance the weight force when the Millikan condition
qdE = mdg is fulfilled (qd and md being the dust charge
and mass, and g the gravitational acceleration) [20].

Unlike the situation of Millikan’s oil-drop experiment,
the electric field is not homogeneous but increases linearly
from the sheath edge towards the electrode and leads to
a parabolic potential well that provides a stable vertical
confinement (see Fig. 1(a)). Dust particles in this poten-
tial well have a resonance frequency ω0 = (qdnie/mdε0)1/2,
which can be used to determine the dust charge qd when
the ion density ni in the sheath and the particle mass md are
known [21, 22]. Lateral confinement of the dust cloud can
either be realized as a harmonic potential well, e.g., by a
parabolic depression of the electrode surface, or as surface
confinement, which is provided by a suitable barrier on the
electrode that raises the equipotentials (see Figs. 1(b), (c)).

Dust confinement against gravity comes at a price.
The plasma sheath is a region with a supersonic ion flow,
vi > vB, where the ion velocity vi exceeds the Bohm ve-
locity vB = (kBTe/mi)1/2 (Te is the electron temperature
and mi the ion mass). This ion flow is responsible for
anisotropic shielding of the dust and provides a source
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Fig. 1 (a) Levitation of a dust particle in the sheath. The in-
homogeneous electric field leads to a vertical harmonic
confinement. (b) Horizontal confinement by a parabolic
shaped electrode. The restoring force Fr is proportional
to the radial displacement. (c) Lateral confinement by
barriers.

of free energy for instabilities. Dust clouds confined in
such a potential trap can form monolayers or multilayer
systems. The monolayers show a hexagonal order in the
plane (Fig. 2(a)), which is the expected minimum energy
configuration. A two-layer system (Fig. 2(b)) has a sur-
prising aligned structure. This alignment is a consequence
of the ion flow, which is deflected by the highly charged
particle and forms an “ion focus” in the wake of the up-
per particle (see Fig. 2(c)) [23, 24]. The positive charge in
the ion focus then attracts the lower particle. Long strings
of particles can be formed in multilayer systems in rf dis-
charges [17, 21, 25] or in dust clouds trapped in a striation
of a dc-discharge, [26]. A detailed discussion of wakefield
attraction can be found in Ref. [27].

Bulk order (fcc,bcc,hcp) was found in multilayer sys-
tems in the sheath region when the ion focus was de-
stroyed by ion-neutral collisions at enhanced gas pres-
sure [28, 29]. The high gas pressure prevented studying
dynamic phenomena in these systems. A face-centered or-
thorhombic structure was reported for a cloud of very small
particles (1.4 µm diameter) suspended in the quasineutral
plasma [30]. Under microgravity, a region of the dust cloud

Fig. 2 (a) Top view of a two-layer plasma crystal. (b) Side view
showing vertical alignment. (c) Deflection of the super-
sonic ion flow by the upper particle and formation of a
positive net charge in the ion focus.

was found crystalline with domains of fcc, bcc, and hcp
structure [31].

The interaction force between dust particles inside the
levitation plane is a shielded Coulomb force. Collision ex-
periments between pairs of particles showed that the pair
interaction can be represented by a Yukawa potential

φ(r) =
q2

d

4πε0r
exp
(
− r
λ

)
(1)

with a shielding length λ ≈ λDe that is close to the
electron Debye length [32]. Unlike shielding in the bulk
plasma, where the ion contribution to shielding is deter-
mined by the ion temperature, ion shielding by a super-
sonic flow involves the ion streaming energy, which ex-
ceeds kBTe. Therefore, the effective Debye length should
be comparable to the electron Debye length. This in-
teraction law was independently confirmed by analyzing
the self-compression of a monolayer cluster in a parabolic
trap [33].

The structure of finite 2D clusters was studied by step-
wise increasing the number of particles in a monolayer. It
was found that symmetric patterns and shell structures are
formed [34, 35]. The enhanced stability of closed shells
compared to incomplete shells was demonstrated by laser-
excited intershell rotation [36].

Crystallization of the particle system requires that the
coupling parameter Γ for screened interaction exceeds a
critical value, Γc = 175 for three-dimensional systems

Γ =
q2

d

4πε0aWSkBTd
exp
(
−aWS

λ

)
. (2)

Here, aWS = (3/4πnd)1/3 is the Wigner-Seitz radius, nd the
dust number density and Td the dust kinetic temperature.
The large value of qd = (103-104)e allows crystallization
of the dust cloud at room temperature whereas trapped ions
with q = e require cooling to milli-Kelvins.
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3. Waves in Monolayer Systems
The interparticle forces in a plasma crystal can be ex-

plored by exciting elastic waves. A monolayer supports
compressional and shear modes in the plane, which have
different sound speeds and a different dependence on the
shielding length [37]. Measuring both sound speeds is
a suitable method to determine qd and λ. Wave experi-
ments were restricted to monolayer plasma crystals, be-
cause multilayer systems are subject to the Schweigert in-
stability [24, 38], which is fed by the free energy of the
streaming ions and leads to violent oscillations and sub-
sequent melting of the crystal. Compressional waves can
be excited by the radiation pressure of a laser [39–41] and
qd and λ could be derived from dispersion and damping of
the waves. The excitation of shear waves was introduced in
Ref. [42]. Besides the study of plane waves, radiation from
a point source was discussed in Ref. [43], and the local-
ized shear was found to excite elastic vortex pairs. Instead
of laser excited waves, the spectra of compressional and
shear phonons can also be recovered by Fourier analysis of
the thermal fluctuations of the particles [44]. Recent inves-
tigations were focussed on the modification of the phonon
spectra near the melting transition [45]. Short wavelength
shear waves in the liquid phase could be excited with
a laser [46] and the expected long-wavelength cut-off for
shear waves in the liquid phase was confirmed [47]. The
nonlinear interaction of compressional phonons was ob-
served above a threshold value that depends on frictional
damping [48].

Instead of their wave dispersion properties, compres-
sional and shear modes can be studied by exciting Mach
cones. The first observation of Mach cones excited by fast
out-of-plane particles [50] was accidental. Laser excitation
of Mach cones was introduced in Ref. [51]. The half-angle
μ of the Mach cone is related to the sound speed cs by

sin(μ) = cs/u , (3)

where u is the velocity of the disturbance that generates
the Mach cone. Wave dispersion outside the acoustic part
of the dispersion branch leads to an internal interference
structure of the Mach cone [52], which resembles the trans-
verse and lateral wakes in the “Kelvin wedge” behind a
moving ship in deep water. The simultaneous excitation of
compresional and shear Mach cones and the corresponding
wake structures were described in Ref. [49]. The result-
ing Mach relation [Eq. (3)] is shown in Fig. 3. The differ-
ent sound velocities of the compressional and shear wave
become evident from the different slopes of the fit lines,
which is proportinal to 1/cs. In this way, Mach cones can
be used as a diagnostic tool for monolayer plasma crystals.

4. Yukawa Balls
Spherical plasma crystals were discovered in

2004 [53] when a cloud of dust particles was levitated by
the thermophoretic force arising from a vertical tempera-

Fig. 3 Test of the Mach relation for compressional and shear
Mach cones (from Ref. [49]).

Fig. 4 (a) Particle arangements in the outer shell of a Yukawa
ball. The superimposed Voronoi cells show the expected
hexagons and pentagons as well as defects. (b) Plotting
all particle positions in cylindrical coordinates (ρ, z) re-
veals the shell structure (from [53]).

ture gradient in the gas, and was confined by nearby glass
walls. These objects were coined “Yukawa balls” because
of the shielded interaction of dust particles in a plasma
and to distinguish them from laser-cooled ions that form
Coulomb balls. Yukawa balls show a nested shell structure
with mostly hexagonal order inside the shells (see Fig. 4).
Three-dimensional dust clusters with a small number of
particles confined in a plasmoid were reported in Ref. [54].

A detailed analysis of the force field [55] showed that
Yukawa balls are confined in a spherical harmonic trap.
Much insight into the building principles of Yukawa balls
was gained from computer simulations of trapped particles
that interact via a Yukawa potential [56–61] .
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4.1 Structure of Yukawa balls
Some of the differences between Yukawa and

Coulomb balls can be understood by a simple model based
on the different interaction force. Consider a spherical as-
sembly of N particles each carrying a charge Q, which are
confined in a parabolic potential well Vt(r) = (1/2)αr2

and interact pairwise either by a repulsive Coulomb force
FC(ri j) = Q2/(4πε0r2

i j) or by a shielded Yukawa force

FY(ri j) =
Q2

4πε0r2
i j

(
1 +

ri j

λ

)
exp
(
− ri j

λ

)
(4)

with shielding length λ. The peculiarity of the Coulomb
force is twofold: (a) Inside a hollow sphere there is no
electric field and (b) a charge distribution with spherical
symmetry can be replaced by a point charge at the center
of the sphere (see Fig. 5(a)). The internal structure of a
Coulomb ball is therefore determined by the requirement
that each particle, at radial position r, is in a force balance
between the repulsion from all those particles at positions
r1 ≤ r and the restoring force Ft(r) = −αr from the trap.
When we assume that there are N(r) particles inside the
radius r, the force balance requires

[N(r) − 1]Q2

4πε0r2
= αr , (5)

hence [N(r) − 1] ∝ r3. On the other hand, when we repre-
sent the discrete particle distribution by a continuous den-
sity distribution n(r), we have

N(r) ≈ 4π
∫ r

0
n(r1)r2

1 dr1 . (6)

Hence, dN(r)/dr = 4πn(r)r2 ∝ r2 can only be fulfilled for
a constant density n(r) = 3αε0/Q2 =: nC. Therefore, a
Coulomb ball in a parabolic trap is necessarily homoge-
neous. In particular, the radius of a Coulomb ball

RC =

[
(N − 1)Q2

4πε0α

]1/3
(7)

can be obtained from the force balance of a particle at the
surface.

For shielded interaction, these principles do not hold
any longer. Consider a point charge Q at a distance z −
z0 from a homogeneously charged (infinitely large) plane
of thickness dz and density n(z0) (see Fig. 5(b)). The test
charge interacts with each volume element in this plane
by the shielded force (4) and the resulting repulsive force
becomes

dFz(z) = n(z0)
Q2

2ε0
exp
[
− z − z0

λ

]
dz . (8)

This force now depends on the distance from the plane,
whereas the force would be constant for Coulomb interac-
tion. This simple model approximates the interaction be-
tween a point charge and a spherical shell as long as r � λ.

Fig. 5 (a) In a Coulomb ball, a particle experiences only a net
force from shells with r1 < r while outer (hollow) shells
give no net force. (b) The interaction of a particle with a
shell of particles is approximated by the interaction with a
charged plane. (c) In a Yukawa ball, a hollow shell exerts
a net force on a particle that pushes it towards the center.

Moreover, because of the finite range of the Yukawa force,
a particle in a hollow sphere, which is not at the center
of the sphere, now experiences a net force that pushes it
towards the center (see Fig. 5(c)). This is a first hint that
Yukawa balls tend to have an inhomogeneous density pro-
file.

A more quantitative description can be obtained for
large Yukawa balls, which have R/λ � 1. The force equi-
librium for a test particle of charge Q inside a Yukawa
ball is defined by the balance of a net force from a gra-
dient in the density n(r) with the confining force Ft. For
simplicity of calculation, we assume that the test particle
is located between an inner and outer half space with a
plane interface and a stratified set of density layers par-
allel to the interface, which have a density distribution
n(r1) = n(r) + (r1 − r)n′(r). Then, the force from the inner
and outer half spaces become

F< =
Q2

2ε0
[λn(r) − λ2n′(r)],

F> = − Q2

2ε0
[λn(r) + λ2n′(r)] , (9)

which define the force balance

F< + F> = −Q2

ε0
λ2n′(r) = αr . (10)

Hence, for a parabolic confinement, the curvature of the
density profile must be a constant,

n′′ = − αε0
Q2λ2

= − nC

3λ2
. (11)

Henning et al. [58] have shown, that the same result is
obtained for a spherical geometry and for arbitrary R/λ.
The density profile therefore has the shape of an inverted
parabola,

n(r) = n(0) − 1
6

nC

λ2
r2 . (12)

The central density n(0), however, still has to be deter-
mined.

013-4



Plasma and Fusion Research: Review Articles Volume 4, 013 (2009)

The force balance at the surface of the Yukawa ball is
determined by the balance from the inner half space with
the trap, F< + Ft = 0, which yields

λn(R) − λ2n′(R) =
2
3

nCR (13)

and using n′(R) = (1/3)nC(R/λ2) we obtain

n(R) =
1
3

nC
R
λ
. (14)

Therefore, despite the radial decay of the density, a
Yukawa ball has a finite value of the particle density n(R) at
the surface. Finally, the density in the center of the Yukawa
ball is obtained as

n(0) =
1
3

nC

[
R
λ
+

1
2

R2

λ2

]
, (15)

which gives the asymptotic form of the model in refer-
ence [58]. Note that the density at the surface scales ∝ R/λ
but the central density increases more rapidly ∝ (R/λ)2.
Hence, the larger a Yukawa ball becomes by adding more
and more particles, the sharper peaked is the density profile
in the center.

The total number of particles in a large Yukawa ball is
given by

N ≈ 2π
3

∫ R

0
nC

[
R2 − r2

λ2

]
r2dr

=
4π
45

R5 nC

λ2
. (16)

For comparison, in a Coulomb ball, N ≈ (4π/3)R3
CnC. This

leads to the useful relation R/λ ≈ 151/5(RC/λ)3/5, which
shows that, compared to a Coulomb ball, the growth of
the radius of a Yukawa ball is much slower for the same
number of particles.

The steepening of the profile shape can be seen in
Fig. 6(a). There, the profile function from reference [58] is
used with the asymptotic form R/λ ≈ 151/5(RC/λ)3/5 and
rescaled to an abscissa r/RC. The shielding factor is here
given as RC/λ = (N/2)1/3r0/λ, r0 being the equilibrium
distance in the parabolic trap of two particles interacting
by a Coulomb force. For r0/λ = 1, the curves represent
N = 2000, 16000, and 27000 particles.

The increase of the central density in a Yukawa ball
by adding more and more particles to the system was stud-
ied experimentally and by computer simulation [57, 62].
The comparison is shown in Fig. 6(b). Here, the number
of particles in the outermost shell becomes smaller than
the prediction for a Coulomb ball (dashed line) whereas in
the innermost shell, the population is larger than that of a
Coulomb ball (full line). The population densities agree
quite well with simulations for r0/λ = 0.6. A density in-
crease in the center could also be identified in experiments
with small clusters [63].

Fig. 6 (a) Density profiles of Yukawa balls for different values
of RC/λ. (b) Measured shell populations in comparison
with the prediction for Coulomb balls (dashed line) and
Yukawa balls for r0/λ = 0.6 (full line).

4.2 Elastic properties of Yukawa balls
The elastic properties of Yukawa ball can be derived

from the eigenmodes of the system, which are the analo-
gon to the phonon dispersion in infinite systems. Eigen-
modes of finite two-dimensional clusters were studied ex-
perimentally in Refs. [64, 65]. Usually, the mode of high-
est frequency is associated with the self-similar radial ex-
pansion (“breathing mode”). Recently, Henning et al. have
proved that the breathing mode only exists for systems with
power-law interaction or in Yukawa systems with special
symmetries [66].

This can easily be seen from the following consider-
ations. In the ground state, each particle at position 
ri in
a Yukawa ball is in equilibrium with the confining force
from the potential trap and with the repulsive forces from
all other particles at a distance ri j. In particular, the net
torque for each particle is zero
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0 =
∑
j�i

F(ri j)

r j − 
ri

ri j
× 
ri

=
∑
j�i

F(ri j)

ri j
(
r j × 
ri) . (17)

Assuming now a small radial expansion of the Yukawa ball
by a factor D = 1 + ε, we obtain the condition

0 =
∑
j�i

F(D ri j)

D ri j
(D2
r j × 
ri) . (18)

Requiring the arbitrariness of the 
ri, the interaction poten-
tial must fulfil the condition F(Dr) = βF(r). Taylor expan-
sion of F yields the differential equation

εrF′(r) − (β − 1)F(r) = 0 , (19)

which leads to a power-law shape of the interaction poten-
tial

F(r) = arc with c = (β − 1)/ε . (20)

The exponent c is usually negative but can even take pos-
itive values, as long as the confinement by the trap is en-
sured. Hence, a Coulomb ball with the r−1 interaction-law
possesses a breathing mode, whereas for a Yukawa ball
the self-similar radial expansion is not an eigenmode, ex-
cept for some specific symmetric arrangements of parti-
cles. This shows again the difference between Coulomb
and Yukawa balls, which originate from the different range
of the interaction force.

5. Diagnostic Methods
The important difference between studying dynamic

phenomena in 2D-plasma crystals and Yukawa balls is the
necessity for a simultaneous measurement of the three spa-
tial coordinates of all particles in the field of view. Dif-
ferent methods have been developed in the last few years
for this purpose: the colour gradient method [54], the
stereoscopy with an orthogonal arrangement of three cam-
eras [67], and digital in-line holography [68].

In the colour gradient method, a small dust cloud is
illuminated by two overlapping laser sheets of different
colour with opposing intensity gradients along the line of
sight of a camera system. The depth information is, in prin-
ciple, contained in the intensity ratio of the scattered light,
which is recorded by two cameras with the same field of
view and appropriate colour filters. However, the depth
resolution was found unsufficient and most measurements
with this system employed a third camera at right angle,
which makes the arrangement a stereoscopic measurement
system. With this system, small 3D dust clusters confined
in a microplasma were studied with respect to the interac-
tion force between the particles [69]. A detailed analysis
led to the conjecture, that an attractive part of the interac-
tion exists for interparticle distances d � λD, which by
far exceed the linearized Debye length. This attractive part

Fig. 7 (a) Arrangement of the cameras and the laser illumination
for stereoscopic measurements (from [62]). (b) Change
of the size of the Wigner-Seitz cells during a transition
from metastable to ground state.

may be related to an unshielded dipole force that exceeds
the shielded repulsive force at large distance [70]. In recent
experiments, the normal modes of a small 3D cluster were
investigated [71]. The spectrum shows a similarity with the
eigenmode spectrum of a droplet, which was interpreted as
a further hint at attractive forces which give the system a
kind of surface tension.

The stereoscopic system with three orthogonal cam-
eras was used to study the structure and dynamical pro-
cesses of small Yukawa balls in a discharge of the kind
used in Ref. [53]. Besides the ground state configurations
of Yukawa balls, which had been studied with scanning
video microscopy [57] the recent interest was focussed on
metastable states [63]. In a large series of repeated ex-
periments with clusters of N = 31 particles, the excited
state (5,26) was found more often than the ground state
(4,27), which can partly be attributed to the higher statis-
tical weight of the metastable state [72]. In this system,
the transition between ground state and metastable state
could be followed dynamically by stereoscopy. This en-
abled a detailed analysis of the volume of the inner Wigner-
Seitz cells during the transition (see Fig. 7), which become
smaller for the inner shell. This supports the finding of in-
homogeneous density profiles of Yukawa balls discussed
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Fig. 8 (a) Experimental arrangement for digital in-line hologra-
phy with laser, beam expander (BE), glass box containing
the Yukawa ball, neutral density filter (NDF) and CMOS
camera. (b,c) Images of (N=4) and (N=7) clusters from
top-view video camera (VM). (d,e) Reconstructed 3D
view with projections into the horizontal plane.

above.
Holography is in principle able to record the full spa-

tial arrangement of a set of particles. Because of the fi-
nite pixel size in digital cameras, which are much larger
than the silver grains in photographic plates for hologra-
phy, digital holography is preferentially made in an in-line
arrangement (DIH) (see Fig. 8(a)), which leads to smaller
spatial frequencies in the interference pattern on the sensor.

Like all camera methods, there is little doubt about the
lateral positions of the particles in the image plane. The
challenge lies in the depth resolution. The DIH method
was tested with small clusters of 4 or 7 particles (Figs. 8(b)-
(e)), for which a direct comparison with a video micro-
scope (VM in Fig. 8(a)) can be made. The reconstructed
3D images show an excellent agreement between DIH and
VM positions.

6. Concluding Remarks
Finite 3D particle arrangements represent a new and

interesting research topic in the field of complex plasmas.
The new questions have stimulated the development of
advanced diagnostic techniques. Significant progress has
been achieved with respect to the structural and dynami-
cal properties of 3D clusters. Because of the overwhelm-
ing number of publications in the field of plasma crys-

tals, some interesting aspects had to be omitted from this
overview, like phase transitions, transport properties, col-
lisions of dust clouds or quantum effects. Some of these
aspects were addressed in earlier reviews [73–75].

Fruitful discussions with D. Block and M. Bonitz
are gratefully acknowledged. This work was supported by
DFG within SFB-TR24 projects A2 and A3, and by DLR
under grant 50WM0739.
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S. Käding, A. Melzer, H. Baumgartner, C. Henning and
M. Bonitz, Plasma Phys. Control. Fusion 50, 124003
(2008).

[28] J.B. Pieper and J. Goree, Phys. Rev. Lett. 77, 3137 (1996).
[29] M. Zuzic, A.V. Ivlev, J. Goree, G.E. Morfill, H.M.

013-7



Plasma and Fusion Research: Review Articles Volume 4, 013 (2009)

Thomas, H. Rothermel, U. Konopka, R. Sütterlin and D.D.
Goldbeck, Phys. Rev. Lett. 85, 4064 (2000).

[30] Y. Hayashi, Phys. Rev. Lett. 83, 4764 (1999).
[31] A.P. Nefedov, G.E. Morfill, V.E. Fortov, H.M. Thomas,

H. Rothermel, T. Hagl, A.V. Ivlev, M. Zuzic, B.A. Klumov,
A.M. Lipaev et al., New J. Phys. 5, 33 (2003).

[32] U. Konopka, L. Ratke and H.M. Thomas, Phys. Rev. Lett.
79, 1269 (1997).

[33] G.A. Hebner, M.E. Riley and K.E. Greenberg, Phys. Rev. E
66, 046407 (2002).

[34] V.M. Bedanov and F. Peeters, Phys. Rev. B 49, 2667 (1994).
[35] W.-T. Juan, Z.-H. Huang, J.-W. Hsu, Y.-J. Lai and L. I, Phys.

Rev. E 58, R6947 (1998).
[36] M. Klindworth, A. Melzer, A. Piel and V.A. Schweigert,

Phys. Rev. B 61, 8404 (2000).
[37] F.M. Peeters and X. Wu, Phys. Rev. A 35, 3109 (1987).
[38] A. Melzer, V. Schweigert, I. Schweigert, A. Homann, S.

Peters and A. Piel, Phys. Rev. E 54, R46 (1996).
[39] A. Homann, A. Melzer, S. Peters, R. Madani and A. Piel,

Phys. Rev. E 56, 7138 (1997).
[40] A. Homann, A. Melzer, S. Peters, R. Madani and A. Piel,

Phys. Lett. A 242, 173 (1998).
[41] A. Piel, A. Homann and A. Melzer, Plasma Phys. Control.

Fusion 41, A453 (1999).
[42] S. Nunomura, D. Samsonov and J. Goree, Phys. Rev. Lett.

84, 5141 (2000).
[43] A. Piel, V. Nosenko and J. Goree, Phys. Rev. Lett. 89,

085004 (2002).
[44] S. Nunomura, J. Goree, S. Hu, X. Wang, A. Bhattacharjee

and K. Avinash, Phys. Rev. Lett. 89, 035001 (2002).
[45] S. Nunomura, S. Zhdanov, D. Samsonov and G. Morfill,

Phys. Rev. Lett. 94, 045001 (2005).
[46] A. Piel, V. Nosenko and J. Goree, Phys. Plasmas 13, 042104

(2006).
[47] V. Nosenko, J. Goree and A. Piel, Phys. Rev. Lett. 97,

115001 (2006).
[48] V. Nosenko, K. Avinash, J. Goree and B. Liu, Phys. Rev.

Lett. 92, 085001 (2004).
[49] V. Nosenko, J. Goree, Z.W. Ma, D.H.E. Dubin and A. Piel,

Phys. Rev. E 68, 056409 (2003).
[50] D. Samsonov, J. Goree, Z. Ma, A. Bhattacharjee, H.M.

Thomas and G.E. Morfill, Phys. Rev. Lett. 83, 3649 (1999).
[51] A. Melzer, S. Nunomura, D. Samsonov and J. Goree, Phys.

Rev. E 62, 4162 (2000).
[52] D.H.E. Dubin, Phys. Plasmas 7, 3895 (2000).
[53] O. Arp, D. Block and A. Piel, Phys. Rev. Lett. 93, 165004

(2004).
[54] B.M. Annaratone, T. Antonova, D. Goldbeck, H. Thomas

and G.E. Morfill, Plasma Phys. Control. Fusion 46, B495
(2004).

[55] O. Arp, D. Block, M. Klindworth and A. Piel, Phys. Plas-
mas 12, 122102 (2005).

[56] H. Totsuji, C. Totsuji, T. Ogawa and K. Tsuruta, Phys. Rev.
E 71, 045401 (2005).

[57] M. Bonitz, D. Block, O. Arp, V. Golubnychiy, H.
Baumgartner, P. Ludwig, A. Piel and A. Filinov, Phys. Rev.
Lett. 96, 075001 (2006).

[58] C. Henning, H. Baumgartner, A. Piel, P. Ludwig, V.
Golubnichiy, M. Bonitz and D. Block, Phys. Rev. E 74,
056403 (2006).

[59] C. Henning, P. Ludwig, A. Filinov, A. Piel and M. Bonitz,
Phys. Rev. E 76, 036404 (2007).
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