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Recent experimental and theoretical studies of two-dimensional (2D) turbulence reveal that spectrally con-
densed turbulence which is a system of coupled large-scale coherent flow and broadband turbulence, is similar
to plasma turbulence near the L-H transition threshold. Large condensate vortices fed via the turbulent inverse
energy cascade, can control both the level of the broadband turbulence by shear decorrelation, and the energy
injected into turbulence at the forcing scale via sweeping of the forcing-scale vortices. The interaction between
these ingredients of spectrally condensed fluid turbulence is in many aspects similar to the interactions in the zonal
flow-GAMs-turbulence system in plasma. In this paper we overview recent results on condensed 2D turbulence
and present evidence of interaction between its three components: condensate structures, turbulence and forcing-
scale vortices. This is compared with the modifications in the spectra of plasma electrostatic potential during L-H
transitions. It is shown that mean zonal flows are spatially and temporally correlated with both the broadband
turbulence and with the narrow spectral range identified as the spectral range of the underlying instability.
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1. Introduction
Interaction between large-scale coherent structures

and turbulence is a very important problem in geophysics,
astrophysics, plasma physics and other areas. In many
cases turbulence feeds coherent structures. On the other
hand, turbulence is affected by coherent shear flows. Such
a complex interplay between the two is rather difficult to
describe theoretically. In this paper we overview our re-
cent experimental studies in two-dimensional (2D) fluid
turbulence and in magnetically confined plasma in the H-1
heliac.

Dual cascades of energy and enstrophy predicted by
Kraichnan in 2D turbulence [1] lead to the spectral power
of E(k) = Ckε

2/3k−5/3 for the wave numbers smaller than
the wave number kf of the forcing scale, k < kf (the in-
verse energy cascade range), and to E(k) = Cqη

2/3k−3

for the small scales, k > kf (forward enstrophy cascade
range). Here ε and η are the dissipation rates of energy
and enstrophy correspondingly. These two ranges have
been found in numerical simulations of the 2D turbulence
and have also been confirmed in experiments. In homo-
geneous turbulence, spectral energy flux ε is expressed via
the third-order moment of the velocity [2]: S 3 =

〈
(δVL)3

〉
+〈

δVL (δVT)2
〉
= 2εr with ε > 0 for an inverse cascade.

Here δV denotes the difference of velocities at two points
separated by distance r, angular brackets denote ensemble
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averaging over realizations, and the subscripts denote the
longitudinal (L) and transverse (T ) velocity components
relative to r.

It is often said that 2D turbulence has tendency to gen-
erate coherent structures due to the inverse energy cascade.
Though this may be true for decaying turbulence, gener-
ally this is incorrect. In forced quasi-2D turbulence co-
herent structures appear as a result of spectral condensa-
tion in the presence of a boundary. In other words, this
is a finite system size effect which requires that the linear
(scale-independent) damping should be sufficiently small
to allow energy transfer via inverse energy cascade to gen-
erate scales comparable to the system size. When this
happens, a structure coherent across the system size de-
velops and dominates the flow. Such coherent condensate
is a shear flow which modifies underlying turbulence that
feeds it. This new state, referred to as condensed turbu-
lence presents particular interest to plasma physics.

Large-scale coherent flows interacting with the back-
ground turbulence are the focus of plasma turbulence re-
search in magnetic confinement devices. Similarly to the
spectrally condensed turbulence in fluids, zonal flows (ZF)
in plasma are generated by turbulence and coexist with it
forming dynamic ZF-turbulence system [3]. It is believed
that ZF reduce turbulence and suppress turbulent transport
of particles and energy across magnetic field leading to
improved confinement, like H-mode. The details of the
mechanisms through which this occurs are not fully clear,
but there is strong evidence that shear decorrelation of tur-
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bulence plays a key role.
Despite different nature of magnetically confined

plasma and thin layers of fluids, comparative studies of
spectrally condensed turbulence in quasi-2D flows and
ZF-turbulence system in plasma appear to be productive
and useful for both disciplines. In this paper we overview
results of our studies of these systems with particular focus
on the interaction between three systems’ ingredients: con-
densate structure (ZF in plasma), broadband turbulence,
and the forcing scale vortices (drift-wave instability in
plasma).

2. Spectral Condensation in 2D Fluids
A good laboratory model of 2D turbulence can be re-

produced experimentally in thin stratified layers of elec-
trolyte by electromagnetically generating large number of
quasi-2D vortices. Experimental setup is described in [4]
and is shown schematically in Fig. 1. Turbulent flow is
generated in stratified thin layers of electrolyte (NaCl wa-
ter solution) resting upon heavier non-conducting fluid
(Flourinert), each layer several millimeters thick. Turbu-
lence is generated by forcing up to 900 J × B-driven vor-
tices in a cell. Spatially varying, vertically directed (nor-
mal to the fluid layers) magnetic field B is produced by a
30×30 matrix of permanent magnets placed under the bot-
tom of the fluid cell in a checkerboard fashion. Solid Per-
spex square boundaries of various sizes are inserted to gen-
erate spectral condensate. Two carbon electrodes on the
either side of the cell are used to run electric current across
conducting layer to generate vortices which force turbu-
lence. Flow is visualized using thin laser sheet (1 mm) par-
allel to the free surface. Laser light is scattered by imaging
particles suspended in the top layer. Images of the parti-
cles are recorded using video camera from above. Shortly

Fig. 1 Schematic of the experimental setup: imaging particles
suspended in the top (conducting) layer are illuminated
using thin laser sheet. Turbulence is produced by the in-
teracting J × B driven vortices in the top layer. Linear
damping is controlled by changing thicknesses of both
fluid layers.

after the current is switched on, forcing scale vortices are
observed as seen in Fig. 2 (a) showing particle streaks at 3
different moments of the flow evolution.

As the forcing scale (9 mm) vortices interact with each
other, larger eddies are formed due to the transfer of en-
ergy from smaller scales (inverse energy transfer), as in
Fig. 2 (b). If the bottom damping is sufficiently low (this is
controlled by changing the thickness of the bottom layer)
the size of the largest eddies may become comparable to
the boundary size and spectral energy starts accumulating
in one big vortex, or spectral condensate, Fig. 2 (c). The
threshold and conditions of spectral condensation are de-
scribed in more detail elsewhere [5].

Here we focus on the mechanics of the formation of
the coherent vortex and on the modifications caused by the
vortex in the spectra of the underlying turbulence. First,
coherent structures are transiently formed in the flow even
before generation of a circular vortex. This is illustrated
in Fig. 3. Vortices the size of about 1/4 of the box size

Fig. 2 Particle streaks photos at different stages of the flow evo-
lution on the way to spectral condensation: (a) t = 3 s, (b)
t = 11 s, (c) t = 50 s.

Fig. 3 Time-averaged velocity fields show the merger of the
coherent same-sign vortices during the formation of the
condensate vortex.
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Fig. 4 (a) Polar coordinates with origin in the center of the con-
densate vortex. (b) Time evolution of the total kinetic en-
ergy (top) and of the radial diffusion coefficient (bottom)
during spectral condensation of turbulence.

are formed. The same sign vortices then start destroying
the separatrix between them until finally one “circular”
vortex forms. The difference between large-scale turbu-
lence eddies, such as those seen in Fig. 2 (b) and vortices of
Fig. 3 (a, b) is the lifetime: a lifetime of a vortex is longer
than the turnover time. Experimentally we reveal coherent
vortices by time-averaging over many instantaneous veloc-
ity fields.

The merger of the vortices into a single circular flow
leads to the regularization of turbulence. To qualitatively
characterize transport of a passive scalar, which is of inter-
est for comparison with plasma particle transport, we in-
troduce polar coordinate system in the fluid cell, as shown
in Fig. 4 (a). The center of it coincides with the center of
the box, which is close to the center of the condensate vor-
tex. In this system 2D velocity can be split into radial Vr,
and azimuthal Vθ, components. Then transport of the pas-
sive scalar from the center of the box toward the boundary
can be characterized by the radial diffusion coefficient

Dr =

〈
Δr2
〉

Δt
=
Δt2
〈
ΔV2

r

〉

Δt
= Δt

〈
ΔV2

r

〉
(1)

Here square brackets denote averaging over the boundary
box.

Figure 4 (b) shows time evolution of the total kinetic
energy of the flow Et, and of the radial diffusion coeffi-
cient Dr. For the Dr evolution, four dynamic stages can

be identified. Dr grows fast during the stage (1), reach-
ing its maximum and then stays constant during the stage
(2). After that, Dr decreases rapidly, stage (3), then slowly,
stage (4), until it reaches another steady state at t ≈ 65 s.
Total kinetic energy Et = 1/2ΣV2 increases rapidly during
the stage (1) together with Dr, and then slowly grows until
reaching its steady-state value during stage (4).

The merger of two co-rotating vortices in 2D fluid has
been studied extensively (see e.g. [6,7]). It has been shown
that an increase of the vortex radius is observed due to vis-
cous diffusion of vorticity. This induces a simultaneous
increase of the ratio between the vortex radius and the sep-
aration distance. This quantity also changes in the pres-
ence of a third vortex in the neighborhood of the vortex
pair. In any case, vortices merge into a bigger vortex in
a fast convective process when this aspect ratio reaches
critical value. Though during the vortex evolution illus-
trated above, the vortices are not exactly the same size and
the system is constantly forced, we observe qualitatively
similar time evolution of the flow on the way to spectral
condensation, Fig. 4 (b): formation of vortices during stage
(1) (Fig. 3 (a)), their slow diffusive growth during stage (2)
(Fig. 3 (b)), then fast convective merger during stage (3)
followed by a slow symmetrization of the condensate dur-
ing stage (4) (evolution from Fig. 3 (c) to (d)).

After the condensate vortex is formed, it exists in
steady state. The energy is still supplied to it via the in-
verse energy cascade from the forcing scale. Properties
of the underlying turbulence however change in the pres-
ence of spectral condensate. First, this coherent shear flow
reduces the lifetime of the turbulent eddies via shear decor-
relation mechanism [8].

Turbulence suppression by sheared flow [8] was pro-
posed by plasma physicists as a hydrodynamic model
aimed at explaining turbulence reduction near transport
barriers which form in plasma in H-mode. Since then this
concept has received wide recognition in the plasma com-
munity, but it remained virtually unknown in fluid dynam-
ics until the first experimental proof in 2007 [4]. The mech-
anism of the shear suppression is as follows. When a tur-
bulent eddy is placed in a stable flow whose velocity varies
in the direction perpendicular to the flow direction, it be-
comes stretched and distorted. The shear suppression can
be viewed as the reduction in the eddy’s lifetime. It occurs
when the inverse shearing rate τs ∼ ω−1

s becomes shorter
than the eddy turnover time, or its lifetime, τe whatever is
shorter, providing that the interaction time between turbu-
lence and flow is longer than other time scales. A reduc-
tion in the spectral power in the presence of a shear flow
is due to the shortened correlation time of eddies. Dimen-
sional scaling analysis which takes into account turbulent
diffusion, shows that this shortened correlation time τse is
related to the shear straining time and the eddy lifetime τe

as τse = τ
1/3
e τ

2/3
s [8].

To study effects of the shear flow on turbulence one
first needs to separate turbulent velocity fluctuations from
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Fig. 5 (a) Kinetic energy spectrum of the total velocity field
averaged over stage 2 of the flow evolution. (b) Spec-
tra computed after the mean velocity subtraction during
stages 2 (open squares) and 5 (solid circles).

mean flows. As shown in [5], the presence of the mean
shear flows in the velocity fields changes all statistical
moments of velocity. The mean flow is thus computed
first by averaging over many realizations in time, then
this time-average velocity field is subtracted from each
instantaneous 2D velocity field to recover fluctuations:
Ṽ(x, y) = V(x, y) − V̄(x, y). Figure 5 shows wave number
spectra corresponding to two stages of turbulence evolu-
tion in Fig. 4 (b): stage (2) and stage (5). Left panel shows
the kinetic energy spectrum measured at stage (2) without
subtracting mean flow. This spectrum is close to the power
law of E(k) ∼ k−3 both below and above the forcing wave
number kf . Right panel shows energy spectra after mean
subtraction, during stage (2) (squares), and stage (5) (solid
circles), corresponding to strong circular condensate.

Mean subtraction recovers spectra of the underly-
ing turbulence. In the presence of the condensate vor-
tex spectral energy of the large-scale turbulent eddies at
k < 160 m−1 is reduced. This agrees with the shear decor-
relation criterion ωsτe > 1. As explained in [4], since
ωs = l

[
(1/r)(dVθ/dr) − Vθ/r2

]
= sl, shear decorrelation

is more efficient for the larger-scale eddies, ωsτe ∼ l5/3.
Indeed, for the conditions of the described experiment,
the shear decorrelation criterion is satisfied for the scales
l > 22 mm, which corresponds to the wave number range
k = π/l < 145 m−1. It is in this range, where spectral en-
ergy of the fluctuations are noticeably reduced, as seen in
Fig. 5 (b).

Shear decorrelation is not the only mechanism
through which a mean flow can affect turbulence. In the de-
scribed experiments energy is injected into the flow by con-
stantly J × B-driven vortices. These vortices are generated
at fixed spatial locations corresponding to the positions of
the permanent magnets. When the mean flow velocity be-
comes large, these forcing-scale vortices are swept away
from their initial positions such that the energy injected
via J ×B force is reduced. To model this, a mean flow was
imposed externally by using large magnetic dipole close to

Fig. 6 (a) Radial profile of the azimuthal velocity component
of the flow externally imposed on top of developed tur-
bulence. (b) Kinetic energy spectra computed after sub-
tracting mean flow: without imposed mean flow (open
squares) and with imposed flow (circles). (c) 3rd order
structure functions of the velocity fluctuations as a func-
tion of the separation distance l: without imposed flow
(open squares) and with the flow (circles).

the free surface of the current-carrying fluid layer. Strong
circular flow, similar to the vortex forming during spec-
tral condensation, is characterized by its azimuthal velocity
component shown in Fig. 6 (a) as a function of its radius.
After the mean velocity is subtracted, the kinetic energy
spectrum is modified in the presence of the imposed flow as
shown in Fig. 6 (b). The spectral energy is reduced every-
where in the inertial range of the inverse energy cascade,
including the forcing scale kf . Such modifications in the
spectrum are consistent with the expected reduction in the
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energy flux forced at k = kf and cascading toward smaller
k. This energy flux ε can also be estimated using the Kol-
mogorov law from the ensemble averaged third-order ve-
locity moment S 3, as described in [4]: ε = S 3/r, where
S 3(l) =

〈
δV3
〉

is the 3rd-order structure function, or the
mean cube of the velocity increment for all points in the
flow separated by distance l. Figure 6 (c) shows S 3 as a
function of l before (squares) and after the external flow
is applied (circles). First, the S 3(r) dependence is linear,
suggesting an almost constant energy flux ε in the inertial
range. Second, this flux (which equals to the energy pro-
duction and to the energy dissipation rates in steady state)
is reduced in the presence of imposed flow by almost a fac-
tor of 10. This leads to the reduction in the spectral energy
of Fig. 6 (b).

Sweeping of the forcing-scale vortices affects energy
input into turbulence when the sweeping rate ωsw = Vθ/l
exceeds the forcing scale vortex turnover time, ωswτe >

1. Unlike shearing, which acts more efficiently on larger
scales, sweeping affects smaller scales first, since ωswτe ∝
Vθ(εl)−1/3.

Thus we identify two different mechanisms through
which a mean large-scale flow affects underlying turbu-
lence. The flow leaves a clear “footprint” on the turbulence
spectra: a suppression of the lower-k spectral range in case
of shear decorrelation of turbulent eddies, and the reduc-
tion in the spectral energy in the entire inertial range, but
without the change in the spectrum power-law of E ∼ k−5/3

when the sweeping is the dominant mechanism. And, of
course, mean flows can lead to the combination of both
effects, affecting the shape of the spectrum as well as the
energy injection [4].

Spectral condensation of quasi-2D turbulence presents
an interesting example of the self-regulation of turbulence.
One can argue, that even in the limit of a very low damp-
ing of the large-scale flow, the condensate vortex controls
the energy flux delivered via the inverse energy cascade.
The accumulation of the spectral energy in the condensate
which leads to its growth, will eventually result in sweep-
ing of the forcing scale vortices, the reduction on the en-
ergy flux in the inertial range, and to the saturation of the
condensate vortex energy. Similarly, the shear decorrela-
tion of the larger-scale turbulent eddies will arrest the in-
verse energy cascade and will also lead to the stabilization
of the condensate energy.

3. Zonal Flows and Turbulence in
Plasma
Zonal flows and their interaction with turbulence were

studied in the context of L-H transitions in the H-1 heliac.
The plasma parameters were in the range: electron temper-
ature Te = 10-20 eV, electron density ne < 2 × 1018 m−3.
For more details see [9]. Fluctuations in the electron den-
sity and electrostatic potential were studied using various
combinations of the Langmuir probes, which were inserted

Fig. 7 (a) Time evolution of the line-average electron density
during spontaneous L-H transition. (b) Radial profiles of
the electron density in L (open triangles) and H (squares)
confinement modes.

into plasma as deep as the magnetic axis. Zonal flows and
turbulent fluctuations were studied in the conditions close
to the L-H transition threshold: either just above, or just
below the threshold, or during plasma discharges showing
spontaneous transitions, like the one illustrated in Fig. 7.
Particle confinement typically doubles during the transi-
tion leading to higher electron density, Fig. 7 (a). Radial
profiles of electron density in H-mode develop a character-
istic kink at ρ ≈ 0.7, which marks the position of the trans-
port barrier, Fig. 7 (b). Fluctuations in the electrostatic po-
tential and in the electron density are substantially reduced
from L to H-mode.

The frequency spectra of the potential fluctuations
at the transport barrier are modified during the transition
as shown in Fig. 8. Frequency spectra carry information
about the wave number spectra. In the laboratory frame
of reference, frequencies of the fluctuations are Doppler
shifted due to the presence of the E × B drift: ωlab =

ωplasma + kθVE×B. The E × B drift often dominates over
the phase velocity in the plasma frame. In this case the
fluctuation frequencies in the lab frame are proportional to
poloidal wave numbers. Since in the broadband turbulence
the wave number spectra are usually isotropic, kθ ≈ kr one
can assume that k ≈ √2kθ ∝ ω. The E × B Doppler shift
plays in such cases a role of the wave number spectrograph.

In L-mode, a spectrum of the potential fluctuations
typically shows two power laws: P ∼ f −5 at f > 30 kHz
and P ∼ f −3.6 at f < 30 kHz, Fig. 8 (a). Previously, the
spectral transfer analysis of the potential fluctuations in
H-1 identified the spectral range of fi = (25-30) kHz as
the range of the unstable drift wave [10], which is analo-
gous to the forcing-scale wave number in 2D fluid. In H-
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Fig. 8 Power spectra of the fluctuations in the floating potential
measured at the transport barrier at ρ ≈ 0.7 in (a) L-mode
and (b) H-mode.

mode, these two power laws are also observed, Fig. 8 (b),
but the cross-over is Doppler shifted toward higher fre-
quency, fi = (50-90) kHz due to the higher radial elec-
tric field. As it has been previously discussed [10], the
broadband turbulence in H-1 is in several aspects similar
to the Hasegawa-Mima type turbulence. In particular, the
phase shift between the potential and density fluctuations is
close to zero. The two power laws in the frequency spectra
seen in Fig. 8 are also consistent with the results of numer-
ical simulations of the Hasegawa-Mima turbulence which
give [11–13]: E(k) ∝ k−11/3, k < kf , and E(k) ∝ k−5, k > kf .
These power laws are predicted for the conditions when
kfρs � Ln/ρs. Here Ln is the density scale length and ρs

is the ion Larmor radius taken with electron temperature.
The observed power laws of P ∼ f −3.6 in the inverse energy
cascade range and P ∼ f −(5÷6) are close to those expected
for the Hasegawa-Mima spectra.

Another interesting feature of the spectrum modifi-
cation during the L-H transition, is that simultaneously
with the strong reduction in the fluctuation level in the
frequency range f > 1 kHz, the low-frequency feature at
f < 1 kHz is increased in H-mode, Fig. 8 (b).

This low frequency band has been identified as the
mean-zero-frequency zonal flow which has poloidal and
toroidal mode number of m = n = 0 [14]. The radial profile
of the spectral power density of the mean ZF is maximum
near the transport barrier [9]. This is shown in Fig. 9 where
the spectral power of the mean ZF is plotted as a function
of plasma radius. It has been suggested that mean ZF may
be responsible for locally reducing the particle transport at
the transport barrier position [9]. Moreover, the radial re-

Fig. 9 Radial profiles of (a) electron density and (b) spectral
power density of the low-frequency ( f1 = (0.5±0.3) kHz)
zonal flow in H-mode

gion in plasma where mean ZF develops in H-mode is very
close to the radius at which finite-frequency zonal flows, or
geodesic acoustic modes (GAM) are maximum in L-mode,
prior to L-H transition [15]. Recently, such a link between
GAM and mean ZF has been demonstrated in the dynamics
studies of the L-H transitions in the D-IIID tokamak [16].

A spectral range of the unstable drift wave at f ≈ fi
appears to be coupled to the mean ZF. Such coupling is
best characterized using the amplitude correlation func-
tion (ACF) used in these studies [14]. The ACF measures
the degree of correlation between two frequency bands
within the same signal. Here we are interested in study-
ing the coupling between the mean low-frequency ZF band
of f1 = (0.5 ± 0.3) kHz and the unstable drift range band
of f2 = (57.6 ± 0.3) kHz. Two time series are extracted
from the potential fluctuation signal by band-pass-filtering
f1 and f2. These two time series are then squared and
passed through a low-pass filter to obtain only the slow
varying amplitude information. Then the cross-correlation
function between these signals is computed, to obtain the
amplitude correlation function, ACF,

ACF(τ) =
〈[

x2
1(t)
] [

x2
2(t + τ)

]〉
(2)

Figure 10 (a) shows the spectrum of the potential fluc-
tuations measured in H-mode inside the transport barrier
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Fig. 10 (a) Power spectrum of the floating potential fluctuations
in H-mode at ρ ≈ 0.5. (b) Amplitude correlation function
measured between the frequency bands f1 = 0.5 kHz and
f2 = 57.6 kHz. The width of each band is Δ f = 0.6 kHz.

at ρ ≈ 0.5. Two boxes indicate frequency bands used to
compute the ACF. The two bands are strongly coupled
showing the correlation above 0.6. It should be noted that
the correlation of the ZF band with other frequencies in the
spectrum, f < fi does not exceed 0.4 at this radial position.

Spectral power densities of the mean ZF and of the un-
stable range (UR) are anti-correlated in space in H-mode.
Figure 11 shows radial profiles of the ZF, Pf 1(ρ), and of the
fluctuations in the unstable range, Pf 2(ρ). The maximum
of the UR, Pf 2, is observed at ρ ≈ 0.5, while further out, in
the region of the transport barrier, it is reduced by a factor
of 10. This sharp drop in the intensity of the UR fluctua-
tions is correlated with the 3-fold increase in the spectral
power of the mean ZF.

The character of the spectral coupling between ZF
and the other frequencies in the broadband spectrum also
changes in the transport barrier region. While at ρ ≈ 0.5
the only two strongly coupled frequency bands are those
of ZF and UR (as in Fig. 10), in the transport barrier,
where mean ZF is strong, the value of the ACF between
f1 = (0.5 ± 0.3) kHz and all other frequencies in the spec-
trum is above 0.5, suggesting strong coupling of the ZF to
all frequencies. How this can be interpreted? Using the

Fig. 11 Spectral power densities of the mean ZF (solid squares)
and the fluctuation in the unstable range (circles) as func-
tions of the normalized plasma radius ρ = r/a, where a is
the mean minor plasma radius.

analogy with the mechanism of sweeping of the forcing
scale vortices in 2D fluids described in Sec. 2, it is possible
to speculate that mean ZF which is spectrally coupled to
the UR via the inverse cascade of energy from UR to ZF
on one hand, and via the sweeping of the UR waves by the
ZF field. In this case, when the ZF becomes sufficiently
strong, it may modulate the UR and the energy flux in the
inertial range. This would lead to the apparent coupling
between all the frequencies in the inertial range and mean
ZF.

4. Summary
Experimental studies of interaction between large-

scale coherent flows in thin fluid layers and in magnetically
confined toroidal plasma show several common features.
In both systems the inverse energy cascade delivers energy
from the forcing scale (unstable drift wave range) into the
broadband turbulence. In fluids, this energy may accumu-
late at the scale comparable to the system size which leads
to spectral condensation and generation of the large-scale
vortex. In plasma, broadband turbulence is also generated
via the inverse energy cascade [10]. The inverse cascade
may be responsible for delivering spectral energy into a
zonal flow. In L-mode it is accumulated in GAM [14],
while in H-mode the GAM dominance turns into the dom-
inance of the mean zonal flow.

It is not clear how mean ZF are sustained in H-mode.
The fluctuation spectra in H-mode show the power laws
expected in the energy and the potential enstrophy inertial
ranges, Fig. 8 (b), which may be indicative of the inverse
energy cascade spectral transfer from the higher frequency
unstable range. A strong link between the two spectral
ranges is also evident from the spatial (anti-)correlation be-
tween UR and ZF of Fig. 11. On the other hand, strong
spectral coupling between the unstable range fluctuations
and mean zonal flow, Fig. 10, maybe indicative of the non-
local energy transfer from UR to ZF via modulational in-
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stability [17]. The result of Fig. 11 is also consistent with
the idea of the Reynolds stress driven ZF, since the maxi-
mum of ZF is observed close to the radial gradient of the
drift wave intensity.

The presence of strong mean zonal flow, which in the
spectra is observed as the spectrally broadened feature with
f1 = 0 ± Δ f , may lead to the modulation of the spectral
energy flux in the inertial range. This may explain strong
spectral coupling (high values of ACF) between ZF and the
broadband turbulence in H-mode.

In thin fluid layers, we also observe a mixture of lo-
cal spectral transfer due to the inverse energy cascade, and
non-local interaction between coherent condensate vortex
with the forcing scale. In this system the condensate vortex
affects energy injection into inertial range via sweeping of
the forcing scale vortices. It also decorrelates larger scale
turbulent eddies and modifies the spectrum of the broad-
band turbulence. This effect was first proposed to explain
plasma confinement effects [8] and recently was shown to
exist in 2D fluids [4].

We should stress that though the above comparative
studies of spectrally condensed turbulence in thin fluid lay-
ers and in magnetically confined plasma (proposed in [18])
are useful as an inspiration for a first-principle interpreta-
tion of the plasma results, this approach cannot possibly
explain rich variety of effects observed in toroidal plasma
(see e.g. [19] and references therein). The generation of
zonal flows does not generally require the inverse energy
cascade as the energy transfer mechanism into zonal flows.
Parametric-modulational instability of drift waves can lead
to the generation of a low-frequency sideband, or a zonal
flow [3]. This mechanism of the zonal flow formation
has recently been confirmed and systematically studied in
cylindrical plasma [20]. The formation of a zonal flow as a
result of modulational instability has also been observed in
the H-1 heliac [21] where the growth of the kθ ≈ 0 low
frequency structure was found to be correlated with the
modulation of a coherent parent wave. The modulational-
instability-driven zonal flows are particularly likely to de-
velop in H-mode, where levels of the broadband turbulence
are substantially reduced.

The quasi-two-dimensionality of the plasma turbulent
flow in this case is not strictly necessary (no need for the
inverse energy cascade). The generation of the large-scale
shear flow can also be similar to the processes in rotating
fluids. Numerical simulations of turbulence in a rotating

frame found that the large-scale two-dimensional vortices
are generated even though the forcing was 3D [22]. It was
suggested that the energy in this case was transferred di-
rectly from 3D modes into 2D modes, rather than the due
to inverse local cascade process. In the plasma context,
a similar result was obtained theoretically. As discovered
in [23], the inverse energy transfer may occur due to near-
resonant interactions of anisotropic trapped electron drift
waves. In this case the spectral energy condenses into
zonal modes.
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