
Plasma and Fusion Research: Rapid Communications Volume 4, 010 (2009)

Interferometry for Weakly Relativistic Plasmas
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Interferometry for weakly relativistic plasmas is studied in this paper. It is shown that the phase difference
in plasma and vacuum propagation becomes small due to the relativistic mass correction of electrons. The axi-
symmetric density profile obtained from the usual Abel inversion equation also becomes small by the correction
factor, which is 1 ∼ 1.3 for T e = 0 ∼ 60 keV. It is shown that we have to use the Abel inversion equation to take
into account the relativistic mass correction of electrons in order to reconstruct the correct density profile.
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Burning plasma physics is currently receiving grow-
ing attention in fusion research. For burning plasmas such
as ITER, the electron temperature is expected to be several
ten’s of keV, and thus relativistic electron effect becomes
important in fusion researches. In microwave plasma di-
agnostics, the relativistic effect of electrons has been stud-
ied [1–5].

In this paper, we study the relativistic correction of
electron mass in microwave interferometry. The disper-
sion relation of the ordinary mode (O-mode) for relativistic
Maxwellian plasma is given by
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where A denotes the relativistic correction of electron mass
for the O-mode cutoff, and is given by
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where ρ = mec2/Te, γ =
(
1 + p2

)1/2
, p = |p| /(mec), me is

the electron mass, c the light speed, Te the electron tem-
perature, and K2(ρ) the modified Bessel function. We here
estimate the relativistic correction of electron mass A for
weakly relativistic plasmas, where e−ργ is approximated by
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In this case, the relativistic correction of electron mass A is
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In Ref. [4], the relativistic correction A = (1 + 5/ρ)1/2 is
proposed, which is approximately equal to Eq. (3) for ρ �
1. We see that A → 1 as Te → 0. We show A (solid
line) as a function of Te in Fig. 1, where the approximated
expressions 1 + 5/2ρ (dashed line), and (1 + 5/ρ)1/2 (dot-
dashed line) are also shown. We see that the expression
1 + 5/2ρ is in good agreement with the exact form of A up
to Te = 60 keV.

In interferometry, the phase difference in plasma and

Fig. 1 The relativistic correction factor A (solid line) as a func-
tion of Te; 1 + 5/2ρ (dashed line), and (1 + 5/ρ)1/2 (dot-
dashed line) are also shown.
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Fig. 2 Interferometer configuration, where a is the plasma-
vacuum boundary.

vacuum propagation is important for density profile recon-
struction, and is given by

ϕ =

∫ y2
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(k0 − k)dy =
2π
λ
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(1 − N)dy, (4)

where k0 = ω/c = 2π/λ is the wavenumber in vacuum.
When ω � ωpe, Eq. (4) is approximated by
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where nc = ω
2meε0/e2, and a is the plasma–vacuum

boundary (see Fig. 2). If we assume a parabolic (axi-
symmetric) density profile given by
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]
, (6)

the phase difference ϕ(x) is reduced to
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We see that the phase difference becomes small due to rela-
tivistic mass correction of electrons. From the assumption
of an axi-symmetric density profile, we can reconstruct the
density profile using the Abel inversion equation, which is
given by
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In this case, if we substitute Eq. (7) into Eq. (8), we obtain
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]
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We see that the reconstructed density profile of Eq. (9) is
small compared with that of Eq. (6) due to the relativistic
mass correction of electrons by a factor A (see also Fig. 3).
The reason for this discrepancy in the density profile is
clear. That is, we did not take into account the relativis-
tic mass correction of electrons in the Abel inversion of

Fig. 3 Reconstructed density profiles Eq. (9) (blue) from Eq. (8)
and Te = 20 keV, and Eq. (6) (red) from Eq. (8-1) with the
relativistic mass correction of electrons.

Eq. (8), while we did include it in the phase difference ϕ
calculation with Eq. (4) and Eq. (5). In fact, from Eq. (5),
we have to take into account the relativistic mass correc-
tion of electrons in the Abel inversion equation. The Abel
inversion equation with this correction is given by

n(r) = −A
λnc

π2

∫ a

r

dϕ
dx

dx√
x2 − r2

, x > r, (8-1)

and, in this case we obtain Eq. (6) in place of Eq. (9) as the
reconstructed density profile.

The relativistic mass correction factor A of Eq. (2) was
derived under the assumption of a relativistic Maxwellian
equilibrium distribution with uniform Te in Ref. [1]. How-
ever, we think that the present result remains valid too for a
local relativistic Maxwellian equilibrium distribution with
a space-dependent Te.

We here discussed interferometry; however, the situ-
ation is the same in reflectometry [5]. If we use the usual
Abel inversion equation without the relativistic mass cor-
rection of electrons for reconstructing the density profile,
the reconstructed density profile is found to be small com-
pared to the original profile by the factor A [5]. Therefore,
we have to use the Abel inversion equation with this cor-
rection to obtain a correct density profile.
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