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Quantifying Profile Stiffness
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Profile stiffness is quantified using a simple technique. The approach is tested on a paradigmatic numerical
stiff transport model for one field (particles). The stiffness is found to exhibit radial structure and to depend on
collisionality, which might help explaining the observed lack of stiffness in stellarators, as compared to tokamaks.
The extension of this approach to heat transport requires some care. A proposal for a stiffness quantifier for heat
transport is presented, and tested on data from the TJ-II stellarator.
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1. Introduction
Profile stiffness (also known as profile consistency or

resilience) is the striking phenomenon that temperature or
pressure profiles tend to adopt the same shape, regard-
less of the applied drive, at least in a certain parameter
range. The phenomenon is well established for tokamaks,
but rarely found in stellarators [1]. This is slightly enig-
matic, since power degradation is a universal phenomenon
in stellarators, with a power dependence similar to that in
tokamaks [2], and it is believed that threshold-triggered in-
stabilities (leading to enhanced transport) should be oper-
ative both in tokamaks and stellarators. This leads to the
expectation that profile stiffness should also be present in
stellarators, if only to a less degree (and less obviously)
than in tokamaks.

The detection of profile stiffness based on the direct
comparison of profiles does not allow a quantification of
the degree of stiffness, while the full 1-D modeling of
transport requires making assumptions not related to the
stiffness issue. Therefore, a stiffness quantifier is needed
to resolve this issue. In the present work, we apply a
standard quantifier for profile stiffness to a paradigmatic
stiff particle transport model. We then discuss the possible
(non-standard) extension of the method to heat transport
and present first results for the TJ-II stellarator.

Profile stiffness can be understood as a sublinear re-
sponse of profile amplitudes to a (small) change in drive.
Pure diffusive transport models with fixed parameters pro-
duce a proportional response in profiles to changes in fu-
elling or heating, since the diffusion equation is linear in
the profile amplitude and the source strength. Thus, the
search for profile stiffness is closely related to the study of
the dependence of transport coefficients on (gradients of)
the transported quantity, since such a dependence would
break the linearity of the diffusion equation.
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Previous attempts to quantify profile stiffness (of the
electron temperature profile) can be classified into two
main phases. First, the work by Lopes Cardozo led to the
introduction of the ratio of the incremental heat diffusiv-
ity (from perturbative analysis) to the steady state (power
balance) value (χinc/χPB) [3, 4]. Although this important
work has added significantly to the general understand-
ing of the issue, this ratio of diffusivities does not provide
an optimal quantifier in the sense that it is not tuned to
the instability mechanisms involved (see the discussion be-
low). Second and more recently, profile stiffness has been
quantified on the basis of a phenomenological critical gra-
dient model [5–10]. The main advance provided by this
approach is the use of ∇T/T (the normalized temperature
gradient) as a critical parameter, motivated by the theory
of electron or ion temperature gradient (ETG/ITG) driven
turbulence and the theory of drift trapped electron modes
(DTEM), and in this respect, it has proved reasonably suc-
cessful. However, a drawback of the analysis proposed in
the cited references is that it requires postulating a spe-
cific phenomenological transport model, for which only
partial justification can be provided. Our view is that stiff-
ness is, in a sense, a “material property,” so that it should
be possible to quantify it independently from the transport
model chosen, and consequently, we will define model-
independent (and therefore, bias-free) stiffness measures.
This should allow distinguishing between the various in-
stability mechanisms generating the observed profile stiff-
ness.

2. Numerical Study
In the following, we will be studying transport using

a simplified transport model that has been developed for
particles alone. Thus, we will address the stiffness issue
in the framework of particle transport first, leaving the dis-
cussion of heat transport, which is largely analogous, for
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later. Furthermore, while in fusion plasmas particle trans-
port is generally considered not to be stiff, an anomalous
particle pinch is commonly observed that might, in part, be
due to nonlinearities of the transport equation, and which
could perhaps be understood in the framework of the ideas
expounded here. Following Ref. [4], one distinguishes be-
tween the steady state (or “power balance”) transport co-
efficient Dpb = −Γ/∇n (here, Γ is the particle flux and ∇n
the density gradient) and the perturbation response value
Dinc = −∂Γ/∂∇n, dubbed the “incremental” transport coef-
ficient. If Dinc > Dpb, the profiles will respond sublinearly
to changes in the source term, thus producing stiffness. Ac-
cordingly, a “stiffness factor” can been defined (by analogy
to [6]):

C =
Dinc

Dpb =
∇n
Γ

∂Γ

∂∇n
, (1)

so that C > 1 would indicate some degree of stiffness.
While this analysis is completely conventional, we stress
that it works only because the critical parameter of the
model, which we will be examining in the following sec-
tion, is designed to be critical with respect to ∇n. We will
return to this important point below.

The evaluation of Dinc requires a (small) perturbation
of the source term and profiles, either spontaneous or in-
duced externally. However, the relevant variables of sys-
tems near a critical steady state tend to fluctuate sponta-
neously around a mean value. This property can be ex-
ploited to obtain another, equivalent estimate of the stiff-
ness that does not require perturbing the system. Inter-
preting the mean amplitude of the fluctuations around the
steady state values (i.e., their standard deviation) as the
small change symbolized by ∂ in Eq. (1) [11]:

Dfluct = RMS(Γ)/RMS(∇n) (2)

where RMS( f ) =
〈
( f − 〈 f 〉)2

〉1/2
, and the angular brackets

refer to a time average. In steady state, and assuming that
the system response to perturbations is linear in the first
approximation, we expect Dfluct � Dinc.

In the following, we study the stiffness parameter C
using a simplified transport model, considered paradig-
matic for transport controlled by a critical gradient. It is
a simplified one-dimensional model for the transport of
a conserved field (such as particles) in fusion plasmas,
based on the continuous time random walk (CTRW) for-
malism [12, 13], which provides a description of diffu-
sive transport processes at a very fundamental level, and
which leads to the generalized master equation (GME).
Notably, this approach avoids making assumptions about
locality of the transport processes, and allows critical gra-
dient mechanisms to be treated in a mathematically sound
manner. When incorporating a critical gradient mecha-
nism, this model was shown to reproduce much of the
unusual phenomenology observed in actual fusion experi-
ments: power degradation, profile stiffness, rapid propaga-
tion of perturbations, “uphill” transport, and a transition of

system size scaling reminiscent of the Bohm/gyro-Bohm
scaling transition [14–19]. Taken together, these features
convert this model into a somewhat “paradigmatic” model
for stiff transport in fusion plasmas.

The simplified model is Markovian in nature and the
time evolution of the single field n(x, t), which may be in-
terpreted as a (particle) density, obeys the following GME:

∂n(x, t)
∂t

= S (x, t)

+
1
τD

∫ 1

0
dx′p(x − x′; x′, t)n(x′, t) − n(x, t)

τD
.

(3)

The domain of the system is 0 ≤ x ≤ 1, implying a nor-
malization of the spatial scales of the system to the system
size. τD is the waiting time and specifies the mean time
a particle remains at a given location before taking a step.
We set τD = 1, implying a normalization of the time scales
of the system to the mean waiting time. S (x, t) is an ex-
ternal particle source and compensates edge losses due to
the absorbing boundary conditions imposed at x = 0, 1.
The function p is a “particle step distribution.” When p is
Gaussian, p(x − x′, x′, t) = exp

[
−(x − x′)2/4σ2

]
/2σ
√
π,

standard diffusion is recovered in the limit of small step
sizes σ (and assuming a smooth density profile [18]):

∂n
∂t
=

∂2

∂x2

[
σ2

τD
n
]
+ S . (4)

Thus, the model is closely related to standard transport
models.

The step distribution p is chosen as follows to produce
the required critical gradient mechanism:

p =
{

p0 : |∇n| < [∇n]crit (sub-critical)
p1 : |∇n| ≥ [∇n]crit (super-critical).

(5)

When the local gradient is below the critical value (subcrit-
ical), transport is governed by the p0 step distribution, and
when it is above (supercritical), it is governed by the p1

step distribution. Here, p0 and p1 are fixed and symmetric
stable probability distributions (of the Lévy type, of which
the Gaussian is a special case). Transport at any given lo-
cation x will therefore be sub or supercritical as a function
of the local value of the density gradient. This introduces
a mechanism for self-regulation into the model.

In this work, p0 is always chosen to be a Gaussian
(with width σ0), while p1 can either be a Gaussian (with
width σ1) or a Cauchy distribution p1(x − x′, x′, t) =
σ1/π(σ2

1+ (x− x′)2). While a Gaussian distribution models
“normal” diffusive transport, a Cauchy distribution (with
a “long tail”) is used to model processes with long-range
correlations, typically called “avalanches” or “streamers”
in the plasma transport context, and representative of tur-
bulent or “anomalous” transport.

To compute Dinc, we will be comparing steady state
profiles at slightly different values of the amplitude of the
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source S . For simplicity, the steady state flux Γ is com-
puted as Γ(x) =

∫ x
0.5 dx′S (x′). The lower limit of the inte-

gral corresponds to the system center at x = 0.5. This cal-
culation is sufficiently accurate for evaluating Dinc. How-
ever, for the calculation of Dfluct, we will use a different
estimate of the flux that includes fluctuating contributions
(see below).

The numerical calculations are performed in the do-
main 0 ≤ x ≤ 1, on a grid with either N = 2000 (high
resolution) or N = 200 (low resolution) grid points, using
standard integration techniques for stiff differential equa-
tions to advance Eq. (3) in time. In all cases, the source
S (x, t) = S 0 is considered constant. We first performed
a scan of the source rate at high resolution (13 cases),
and after checking that the results at lower resolution were
equivalent, we performed a bi-dimensional parameter scan
of both the source rate and the subcritical diffusion coeffi-
cient, the latter being proportional to σ2

0 (130 cases).

2.1 Source scan
More details on the high-resolution calculations dis-

cussed here can be found in Ref. [20]. We set σ0 = 0.002,
while p1 is Gaussian with σ1 = 0.008 for the cases labeled
Gauss-Gauss or “GG” (both transport channels are Gaus-
sian), or p1 is Cauchy withσ1 = 0.004 for the cases labeled
Gauss-Cauchy or “GC.” The critical gradient is chosen as
[∇n]crit = 2000.

For both series (GG and GC), a scan of the source rate
was performed, choosing S 0 ∈ {0.01, 0.02, 0.05,0.1, 0.2,
0.5, 10}. The parameter Dinc was computed by comparing
the profiles corresponding to two subsequent values of S 0.

Steady state profiles are shown in Fig. 1 and the corre-
sponding gradients in Fig. 2. The GG and GC profiles are
very similar, except for the highest fuelling rate (S 0 = 0.5):
whereas the GC profile remains critical across the system
(as is evident from the gradient, which remains below the
critical value across most of the system), the GG profile
“bulges,” i.e., becomes supercritical. This difference can
be ascribed to the larger transport capacity of the super-
critical transport channel in the GC case.

In order to quantify the stiffness, we computed the
stiffness factor C. Fig. 3 shows the radial profiles of the
stiffness factor C for the GG and GC cases. The spikes in
the figure occur when the local values of the gradient ∇n(x)
corresponding to the two subsequent values of S 0 being an-
alyzed are equal. Such points should be ignored, since their
statistical error is large, and thus, we will base the analysis
on the global traces while ignoring the spikes. The figure
shows that the critical region (where C � 1) grows inward
from the edge as the source is increased. Next, a super
critical region (with C � 1) starts to grow inward from the
edge. The supercritical state covers almost the entire sys-
tem in the GG case at the highest fuelling rate, while in the
GC case, it only affects a narrow boundary layer for the
highest fuelling rate.

Fig. 4 shows 〈C〉, the radial average of C. The points

Fig. 1 Profiles vs. S 0: Gauss-Gauss (top) and Gauss-Cauchy
(bottom).

Fig. 2 Profile gradients vs. S 0: Gauss-Gauss (top) and Gauss-
Cauchy (bottom).

in the figure are labeled by the lower of the two S 0 values
used. In comparison to the GG cases, the GC cases do
not only yield (slightly) larger values of C, but the range
of values of S 0 where C � 1 exceeds the corresponding
range for the GG cases.

2.2 Bi-dimensional parameter scan (source
rate and diffusivity)

Here we scan the source amplitude S 0 and σ0. The
latter can be interpreted as a scan of the subcritical diffu-
sivity (or “collisionality”). As in Ref. [14], we set τD = 1,
S (x) = S 0, and [∂n/∂x]crit = 50. To compute C, the same

S1070-3



Plasma and Fusion Research: Regular Articles Volume 3, S1070 (2008)

Fig. 3 Profiles of C for different combinations of fuelling S 0.

Fig. 4 Source scan, 〈C〉 vs. S 0.

runs were repeated with S (x) = 1.1 · S 0.
Fig. 5 shows 〈C〉 for the GG cases with σ1 = 0.08,

and for GC with σ1 = 0.04. For GG, the largest possible
value of σ0 is σ1. For GC, no such limit exists on σ0. It
is observed that 〈C〉 is a sensitive diagnostic parameter for
criticality.

In all series studied, 〈C〉 is seen to increase gradually
with increasing σ0, reach a maximum value, and then drop
somewhat abruptly and make a sharp transition to its sub-
critical expectation value (C = 1) at a precise value of σ0.
For the GC cases, the point where the system transits from
a fully subcritical state to a critical state has been com-
puted in a previous work [14]. This critical power thresh-
old is given by S c = 2σ2

0/τD [∇n]crit or σ0 =
√

S c/10 with
our choice of parameters. This matches the results exactly.
For the GG cases, the transition point is set by the lesser
of the cited threshold and the condition σ0 ≤ σ1 (σ1 can-
not be smaller than σ0, because the supercritical transport
channel must provide faster transport than the subcritical
transport channel for the critical mechanism to work).

Fig. 5 〈C〉 vs. σ0 for various values of S 0: Gauss-Gauss (top)
and Gauss-Cauchy (bottom).

Fig. 6
〈
Cfluct
〉

vs. σ0 and S 0: Gauss-Gauss (top) and Gauss-
Cauchy (bottom).

2.3 Stiffness from fluctuations
Above we also introduced a definition of stiffness

from fluctuations (cf. Eq. (2)). In this section, we will
evaluate this quantity for the cases studied here. The ad-
vantage of this stiffness measure over the previous one is
that it does not require comparing the profiles of two sepa-
rate steady states; however, it requires access to the fluc-
tuating quantities. In the case of our numerical model,
it is straightforward to compute the fluctuating gradient,
while the flux can be evaluated from particle conservation
(∂n/∂t = −∂Γ/∂x + S ) in combination with Eq. (3). Thus,

Γ(x, t) =
∫ 1

0
dx′K(x − x′, x′, t)

n(x′, t)
τD(x′)

, (6)

where K(x − x′, x′, t) = Θ(x − x′) − P(x − x′, x′, t), Θ(x) is
the Heaviside function, and P(∆, x′, t) =

∫ ∆
−∞ dxp(x, x′, t) is

the cumulative step probability distribution.
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Fig. 6 shows the calculation of
〈
Cfluct

〉
. Compare these

results to Fig. 5. Although the maximum numerical value
of
〈
Cfluct

〉
is somewhat lower than that of 〈C〉, the global

trend is the same. The deviation between C and Cfluct at
points with large stiffness is to be expected, as the system
response will be strongly nonlinear at such points. The
calculation of Cfluct is not possible when the system is lo-
cally static, which explains why these figures have less data
points than Fig. 5.

3. Extension to Heat Transport
The preceding analysis was simplified by the fact that

the thermodynamic force and the critical parameter were
both equal to ∇n. For heat transport, these two quantities
do not coincide, and the definition of a stiffness quantifier
is less obvious. The traditional proposal, C = χinc/χpb =

−∂q/∂(n∇T )/χ [6], where χ is the heat diffusivity, will re-
spond only weakly when the system criticality is not deter-
mined by n∇T � constant. In general, a stiffness quantifier
C that responds sharply to a given critical condition should
be proportional to the inverse of the change in that criti-
cal condition, as might indeed be deduced from the mod-
eling efforts in, e.g., [5]. Since it is being suggested that
ITG/ETG/DTEM might play a role in the stiffness (if any)
of the temperature profile, a suitable choice for the critical
parameter might be ∇T/T [21]: therefore, we define the
stiffness of the temperature profile by

CLTe =
1
χ

∂(χ∇ ln T )
∂(∇ ln T )

. (7)

This unorthodox proposal is designed to detect the depen-
dence of the heat diffusivity, χ, on the expected critical pa-
rameter for the ETG instability, ∇T/T . We note that many
alternative definitions are possible. In fact, one might de-
vise a specific definition for every threshold-triggered in-
stability suspected to be operative in fusion plasmas. Per-
haps such an approach can be used to identify the different
instabilities involved in regulating the profiles.

4. Application to the TJ-II Stellarator
Here, we report the first attempt to estimate the stiff-

ness of the temperature profile in the stellarator TJ-II. Pro-
files at TJ-II are obtained by single-pulse high-resolution
Thomson Scattering diagnostic [22], yielding around 200
data points for the electron temperature T and density n
along a chord spanning most of the plasma cross section,
with a spatial resolution of 2.25 mm.

The goal of the present analysis is to determine the
global transport response to a change in heating. There-
fore, we fit the profiles to simple functional forms, thus
ignoring any detailed radial structure. This improves the
robustness of the calculation of radial derivatives neces-
sary to compute CLTe. The temperature profile is fitted to
the sum of two Gaussians, while the density profile is fitted
to a Gaussian multiplied by a second-order polynomial in

Fig. 7 Stiffness estimate for TJ-II.

ρ2 (for symmetry). ρ =
√
ψ is a radial coordinate, where

ψ is the normalized poloidal magnetic flux, obtained from
the theoretical calculation of the magnetic flux surfaces in
vacuum. Finite pressure effects can be safely ignored. The
discharges studied here are those reported in Ref. [23].

The error in the profile reconstruction, evaluated using
the Jacobian of the fit matrix, is of the order of 10%, lower
at the center but increasing towards the edge. While the
temperature profile reconstruction is reliable (i.e., with an
error less than 10%) to about ρ = 0.7, the density profile
reconstruction is reliable only to about ρ = 0.4. The cal-
culation of CLTe is not very sensitive to the details of the
density profile.

To compute χ and CLTe, an estimate of the heat flux q
is required. The heat source is assumed to have a Gaussian
deposition profile, centered at ρ = 0, with a fixed width of
∆ρ = 0.2. The heating efficiency is estimated to be 60%.
Radiation and other losses are ignored. The heat flux is ob-
tained by integrating the net deposited power. In any case,
the stiffness factor CLTe is not very sensitive to the details
of this calculation. Fig. 7 shows the mean stiffness factor,
averaged over 9 equivalent discharge combinations with
similar densities and different heating levels. The spikes
in the curves of

〈
CLTe
〉

are not significant, as they cor-
respond to radial points where the curves of ∇ ln T , cor-
responding to the two discharges being compared, cross.
At such points, both the value and error of CLTe are in-
finite. However, ignoring the spikes, one observes that a
certain profile stiffness exists (

〈
CLTe
〉
> 1) in the radial

range 0.15 ≤ ρ ≤ 0.55, roughly coincident with the T gra-
dient region.

5. Discussion
The quantification of profile stiffness is directly re-

lated to the detection of the dependence of the transport
coefficient on the profile gradient. In accordance with this
idea and with literature, we use a stiffness quantifier C, and
show that it provides a useful quantification of stiffness in
a paradigmatic transport model. It appears that stiffness
has a radial structure and depends on system parameters
(such as the source or drive and the collisionality), which
could possibly explain the observed differences between
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tokamaks and stellarators.
The extension of these results to heat transport re-

quires some care. In this work, we suggest that the defi-
nition of stiffness can be tuned to the critical mechanism
suspected to be regulating the profiles. This tuning then
means that the stiffness quantifier responds sharply when
the suspected mechanism is indeed operative. More than
one mechanism can be contemplated, and corresponding
stiffness quantifiers can be defined. Thus, it may be possi-
ble to establish the parameter ranges and locations where
each mechanism operates.

Finally, we have applied a particular stiffness quanti-
fier to TJ-II data, and obtained a moderate degree of stiff-
ness.
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