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Plasma dynamics and structure are studied using a one-dimensional theoretical model for the anomalous
transport diffusivities. In this analysis, the high collisional Pfirsch-Schlüter regime is examined and the anomalous
particle diffusivity is employed. The reduction of the anomalous particle diffusivity and a steep gradient in the
density profile can be obtained. This prediction may be the theoretical explanation for the internal diffusion
barrier observed in super dense core plasmas of large helical device.
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1. Introduction
Turbulence-driven transport and transport barriers are

the key issues in fusion research. The majority of efforts
have been focused in understanding improved confinement
modes (such as the H-mode). Among various improved
confinement modes, two main types of transport barriers
are observed in helical experimental results. At first, be-
cause of the radial transition of Er and the improvement
in the electron confinement, an electron internal transport
barrier (e-ITB) was observed at the transition point for Er.
Transport analysis with the effect of zonal flows could pre-
dict an e-ITB in helical plasmas [1]. A comparison of the
analysis results with the experimental results was made [2].
As the second type of transport barriers, an internal dif-
fusion barrier (IDB) was recently observed with the high
gradient of the density in a super dense core (SDC) plasma
in a large helical device (LHD), when a series of pellets is
injected [3]. In the core region, the obtained high density
and the temperature are around 5 × 1020 m−3 and 0.85 keV,
respectively. A transport study of a SDC plasma is an ur-
gent and critical issue in helical confinement plasmas. We
solve the temporal transport equations for the density, ra-
dial electric field, and temperature to study the dynamics
of SDC plasmas in a cylindrical configuration. The ad-
ditional source profile of the density, which corresponds
to that in the case of the pellet injection in LHD experi-
ments, is studied in the transport equations. The analyt-
ical form used here for the neoclassical particle and heat
flux related with the helical ripple trapped particles in the
high-collisional regime is given in [4]. The radial electric
filed is assumed to be determined by the ambipolar con-
dition, which is constituted with the neoclassical particle
flux. The density and temperature profiles are determined
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from the neoclassical and anomalous transport. A transport
model for anomalous diffusivities is adopted to describe
the turbulent plasma. A dynamics for a self-consistent so-
lution for plasma profiles is examined, and the barrier of
the particle transport at the inner radial point in the den-
sity profile can be reproduced. That can explain a SDC
plasma, which is accompanied with an IDB in LHD. The
profile of the thermal diffusivity is examined when a high-
density plasma corresponding to a SDC plasma is obtained
as a calculation result.

2. Model Equations
The model equations used in this study are shown

here. The one-dimensional transport model is employed.
The cylindrical coordinate is used, and r-axis is taken in
the radial cylindrical plasma in this article. The region
0 < ρ < 1 is considered, where a is the minor radius,
and ρ = r/a. The expression for the radial neoclassi-
cal flux associated with helical-ripple trapped particles is
given in [4], which covers the Pfirsch-Schlüter collisional
regime, because the plasma state of a SDC corresponds to
the high-collisional regime. The total particle flux Γt is
expressed as Γt = Γna − Dan′, where Γna is the neoclas-
sical flux associated with the helical-ripple trapped parti-
cles, and the prime denotes the radial derivative. Here,
Da is the turbulent (anomalous) particle diffusivity. The
energy flux related with the neoclassical ripple transport
Qna

j is obtained in the same way as the neoclassical particle
flux. The total heat flux Qt

j for the species j is expressed
as Qt

j = Qna
j − nχaT ′j − 5Dan′T j/2, where χa is the anoma-

lous heat diffusivity, and Qna
j is the neoclassical contribu-

tion from the Pfirsch-Schlüter regime. A theoretical model
for the anomalous heat conductivity χa is adopted and is
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explained later. The temporal equation for the density is

∂n
∂t
= −1

r
∂

∂r
(rΓt) + S n + S p, (1)

where the term S n represents the particle source and the
parameter S p is the term to simulate the experimental pro-
cedure of the pellet injection. The detail about the term
S p will be explained later. The equation for the electron
temperature is given as

3
2
∂

∂t
(nTe) = −1

r
∂

∂r
(rQt

e)− me

mi

n
τe

(Te−Ti)+Phe, (2)

where the term τe denotes the electron collision time. The
term Phe represents the absorbed power due to the electron
cyclotron resonance (ECRH) heating. The temporal equa-
tion for the ion temperature is

3
2
∂

∂t
(nTi) = −1

r
∂

∂r
(rQt

i)+
me

mi

n
τe

(Te −Ti)+Phi. (3)

The term Phi represents the absorbed power of ions. The
equation for the radial electric field in a nonaxisymmetric
system is expressed by the ambipolar condition as

∑

j

Z jΓ
na
j = 0. (4)

In this article, we examine the plasma which consists of
electrons and hydrogen ions. Therefore, the ambipolar
condition, Eq. (4), can be rewritten as Γna

i = Γna
e . It

is well known that the neoclassical transport is dominant
when the radial electric field is formed in helical plas-
mas [5]. The analysis including the temporal equation of
Er [6] which includes the effect of the electric field dif-
fusion is left for the future study. The source profiles are
selected here as follows. The particle source S n is set as
S n = S 0 exp((r − a)/L0), where L0 is set to 0.1 m. This
profile represents the peak at the plasma edge of the par-
ticle source due to the ionization effect. The intensity S 0

governs the average density, and is taken as a control pa-
rameter to specify the density profile in this article. The ra-
dial profiles of the electron and ion heating terms, Phe and
Phi, are assumed to be proportional to exp(−(r/(0.5a)2) for
the sake of an analytic insight.

3. Model for Anomalous Transport
Diffusivities and Boundary Condi-
tions
We adopt the model for the turbulent heat diffusiv-

ity χa based on the theory of self-sustained turbulence
due to the ballooning and interchange modes, both driven
by the current diffusivity [7, 8]. The anomalous trans-
port coefficient for the temperatures is expressed as χa =

χ0/(1 + Gω2
E1) (χ0 = F(s, α)α

3
2 c2vA/(ω2

peqR)), where ωpe

is the electron plasma frequency. The factor F(s, α) is the
function of the magnetic shear s and the normalized pres-
sure gradient α, defined by s = rq′/q and α = −q2Rβ′.

For the ballooning mode turbulence (in the system with a
magnetic well), we employ the anomalous thermal conduc-
tivity χa,BM. The details about the coefficients F(s, α), G,
and the factor ωE1, which stands for the poloidal E × B ro-
tation frequency, are given in [8] in the ballooning mode
turbulence. In the case of the interchange mode turbu-
lence for the system of the magnetic hill [7], we adopt the
anomalous thermal conductivity χa,IM. The details about
the coefficients F, G, and the factor ωE1 in the case of the
interchange mode were given in [7]. The greater of these
two diffusivities is adopted as χa = max(χa,BM, χa,IM). The
value for the anomalous diffusivities of the particle is set
as Da = χa to examine the radial variation in the profile of
the particle diffusivity Da, when the steep radial gradient in
the density profile can be obtained as a calculation result.

The equations of density, temperature and electric
field (1)-(4) are solved with the prescribed source profiles,
under the appropriate boundary conditions. We fix the
boundary condition at the center of the plasma (ρ = 0),
such that n′ = T ′e = T ′i = 0. The boundary conditions at
the edge (ρ = 1), with respect to the density and temper-
ature, are given by specifying the gradient scale lengths.
We employ these conditions, −n/n′ = 0.1 m and −Te/T ′e =
−Ti/T ′i = 0.1 m, in this article. The machine parameters
that are similar to those of LHD are set to be R = 3.6 m,
a = 0.6 m, B = 3 T, 
 = 2, and m = 10. In this case, we
set the safety factor and the helical ripple coefficient as q =
1/(0.4 + 1.2ρ2) and εh = 2

√
1 − (2/(mq(0)) − 1I2(mr/R),

respectively. Here, q(0) is the value of the safety factor at
ρ = 0 and I2 is the second-order modified Bessel function.

4. Dynamical Response after Pellet
Injection
Using these parameters and boundary conditions,

the one-dimensional transport analysis for the LHD-like
plasma has been performed, and the profiles of n, Te, Ti,
and Er are solved using equations (1), (2), (3), and (4). We
adopt a theoretical model for the anomalous transport dif-
fusivities driven by the current diffusivity as a candidate.
An example is taken from the plasma, which is sustained
by the ECRH. At first, we obtain self-consistent steady
profiles of n, Te, Ti, and Er for the given source profile.
To set the line-averaged density to be approximately n̄ �
1 × 1020 m−3, the line-averaged temperature of electrons
to be approximately T̄e � 0.4 keV, and the line-averaged
temperature of ions to be approximately T̄i � 0.4 keV, the
absorbed power of electrons is set to be 1 MW and the co-
efficient S 0 is taken as 7×1020 m−3s−1, to obtain the above-
mentioned anomalous transport coefficients, where the ab-
sorbed power of ions is taken as 0 kW. The radial electric
field takes a negative value in the entire radial region. Next,
we use these obtained profiles of n, Te, Ti, and Er as an ini-
tial condition, i.e., we begin a new calculation from the
profile of the density as n̄ � 1 × 1020 m−3s−1 and the neg-
ative Er in the entire region. In this parameter region ex-
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Fig. 1 The dynamics of the density radial profiles. The dotted
line, the dashed line and the solid line show the states at
the times 0 ms, 1 ms and 10 ms, respectively.

Fig. 2 The profiles of the electron temperature at the times 0 ms,
1 ms and 10 ms. Because the density rapidly increases
in the core region, the electron temperature is found to
decrease in that region (ρ < ρT).

amined here, both typical energy and particle confinement
times are approximately 1 s. To simulate the experimental
procedure of the pellet injection, we include the parameter
S p of the particle source in Eq. (1). This parameter S p has a
distribution as S p = S p0 exp(−(r/rp)2), which is set to have
a value from the initial time t = 0 to 1 ms. We set the half
width of the profile S p as rp = 0.2a. In other words, we set
S p0 = 1×1023 m−3s−1 for 0 < t ≤ 1 ms and S p0 = 0 m−3s−1

for t > 1 ms. We show the dynamics of the plasma radial
profiles n (Fig. 1), Te (Fig. 2), Ti (Fig. 3) and Er (Fig. 4) at
the times 0 ms, 1 ms and 10 ms. The profiles labelled by
0 ms represent the initial conditions used in the calculation
in this article (with the dotted lines). We use the radial

Fig. 3 The profiles of the ion temperature at the times 0 ms, 1 ms
and 10 ms.

Fig. 4 The dynamics of the radial electric field. At the time
10 ms, the radial transition of Er from the positive value
to the negative value can be obtained.

mesh dx = a/100 for evaluating the equations (1)-(3). If
we use smaller radial and temporal meshes, we can repro-
duce these calculation results shown in all figures of this
article. As the time goes on, the density increases and the
positive electric field appears. In Fig. 1, the rapid change of
the gradient in the density profile at t = 10 ms can be found
at ρ = ρT(� 0.2). The parameter ρT represents the location
of the transition from the positive Er to the negative Er at
10 ms in Fig. 4. Also in this figure, we can show the steep
gradient of the radial electric field at the transition point
ρT. (The profile of the radial electric field is determined by
the ambipolar radial electric field, and the single solution
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Fig. 5 The radial profiles of the anomalous particle diffusivity
Da in the region 0 < ρ < 0.5 at the times 0 ms (with
the dotted line), 1 ms (with the dashed line) and 10 ms
(with the solid line). We can show the clear reduction of
the anomalous particle diffusivity at the time 10 ms in the
region ρ < ρT.

of this field for the ambipolar condition can be obtained
at a radial point.) The gradient of the radial electric field
is sufficiently strong to suppress the anomalous transport
|E′r | � 1×105 Vm−2 at ρ = ρT. Therefore, the improvement
near the transition point can be achieved. In Figs. 2 and 3,
the temperatures are found to decrease toward the plasma
center when the value of the density rapidly increases. The
rapid increase in the density between the times 0 and 1 ms
in the core region mainly depends on the pellet input. After
the time 1 ms, the density in the core region continues to
increase because there is an inward neoclassical transport
due to the positive gradient of the temperature profiles. If
the time passes the confinement time, the plasma profiles
takes the initial values of the parameters. At t = 10 ms, the
clear barrier with respect to particle transport in the density
profile can be obtained in Fig. 1.

A profile in the region ρ < 0.5 of the anomalous trans-
port diffusivity is shown in Fig. 5. In the region ρ < ρT,
the reduction of the anomalous particle diffusivity can be
observed, because the value of the anomalous transport dif-
fusivity is proportional to the square of the safety factor q,
and the temperatures of electrons and ions decrease toward
the plasma center at 10 ms. A clear reduction of the anoma-
lous particle diffusivity is observed at the transition point
ρ = ρT, due to the strong gradient of Er compared with the
region ρ > ρT. In the region ρ < 0.3 at the time 10 ms, the
neoclassical particle diffusivity DNEO(= −Γna/n′) is found
to be much smaller than the absolute value of the effective
anomalous particle diffusivity and is |DNEO| < 0.01 m2s−1

represented as the dotted line. In the core region, the
slightly negative value for the effective neoclassical par-

Fig. 6 The radial profiles of the particle diffusivity in the region
0 < ρ < 0.5 at the times 10 ms. We can show the strong
reduction in the sum of the neoclassical particle diffu-
sivity and the anomalous particle diffusivity at the time
10 ms in the region ρ < ρT with the solid line.

ticle diffusivity DNEO and the particle neoclassical pinch
are obtained at the time 10 ms. In Fig. 6, the dashed line
represents the radial profile of the anomalous particle dif-
fusivity Da, and the solid line shows the radial profile of
the sum of neoclassical and anomalous particle diffusivity
Dtot(= DNEO + Da) at the time 10 ms. The clear reduction
can be obtained in the sum of the neoclassical and anoma-
lous transport. Therefore, we can obtain the clear barrier
with respect to the particle transport in Fig. 1 (n profile at
t = 10 ms). It is emphasized that the barrier formation
starts to occur after the end of the particle fuelling. It takes
a few ms for the establishment of a barrier seen in Fig. 5.
It is found that the anomalous particle transport is more
important in the improvement of the particle confinement
in the plasma core region than in the neoclassical particle
transport in the parameter region examined here. If we set
much smaller value of S p0, i.e., S p0 = 1×1022 m−3s−1 than
that (S p0 = 1 × 1023 m−3s−1) in this calculation, we can
not determine the steepening in the density gradient, be-
cause the gradient of Er after the pellet fuelling (1 ms) is
not sufficiently strong. It is shown that there is a threshold
value for S p to form the barrier with respect to the particle
confinement in the density radial profile.

5. Summary and Discussions
We have studied the strong reduction of particle trans-

port when the dynamics and the radial structure of pro-
files of the density, the temperatures and the electric field
are examined in toroidal helical plasmas. The analysis
is performed using the one-dimensional transport equa-
tions. These transport equations include the contributions
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from the neoclassical transport and the anomalous trans-
port driven by the current diffusivity. The neoclassical the-
ory for the particle and heat flux in the the Pfirsch-Schlüter
regime is adopted. The radial profile of the electric field is
determined by the ambipolar condition. The clear change
of the gradient in the density profile and the reduction of
the anomalous particle transport in the core region after the
particle fuelling, if the value of the particle fuelling (the
pellet size in the experiment) exceeds the threshold, can be
shown when the temporal evolution of the plasma profiles
are examined. This theoretical prediction may explain the
internal diffusion barrier (IDB) observed in LHD plasmas.
It is predicted that the additional particle source S p has a
threshold value to obtain the reduction of the anomalous
transport diffusivity. Furthermore, this threshold value of
S p0 strongly depends on the shape of the distribution, e.g.,
the parameter rp which determining the half-width length
of the additional particle source. To study the threshold
value of S p0 for obtaining the clear barrier of the particle
transport, the parameter survey of the calculations results
is required. These are left for future studies.
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