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It is shown in Large Helical Device experiments that transport modeling based on only fluid description
is insufficient to express edge transport phenomena in and around a magnetic island with lower collisionality.
Furthermore, in recent tokamak experiments, it is found that the so-called stochastic diffusion theory based on
“field line diffusion” overestimates the radial energy transport in collisionless edge plasma affected by resonant
magnetic perturbations, though the perturbations induce a chaotic behavior in the field lines. These results imply
that conventional modeling of edge transport should be reconsidered for a lower collisionality case. A simula-
tion study of neoclassical transport in magnetic islands and ergodic regions is attempted for understanding the
fundamental properties of such collisionless edge plasma. By using a drift kinetic equation solver without the
assumption of nested flux surfaces (the KEATS code), it is possible to conduct the investigation. In this paper,
we report the simulation study of ion transport in the ergodic region, neglecting the effects of an electric field and
neutrals. The simulation results are interpreted through the discussion based on statistical studies.
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1. Introduction
It is shown in Large Helical Device (LHD) experi-

ments that transport modeling based on only fluid descrip-
tion is insufficient to express edge transport phenomena
in and around a magnetic island with lower collisional-
ity [1–4]. For example, healing of the m/n = 1/1 mag-
netic island observed in the edge of the LHD plasma is
not explained by simulations based on the fluid equations
neglecting kinetic effects when solving the relaxation pro-
cess [5], where m and n are the poloidal and toroidal mode
numbers respectively, with the temperature Tedge � 500 eV
and plasma density nedge ∼ 1019 m−3 in the island region.
On the other hand, in recent tokamak experiments, it is
found that the so-called stochastic diffusion theory based
on the “field line diffusion” [6] overestimates the radial en-
ergy transport in the edge added resonant magnetic per-
turbations (RMPs) [7, 8]. This fact is discovered in the
experiments of edge localized modes (ELMs) suppression
by adding RMPs to collisionless edge plasma. (Histori-
cally, the idea of suppressing ELMs and controlling the
edge transport using RMPs has been proposed about 20
years ago [9].) When the RMPs induce a chaotic behavior
in the field lines, the stochastic diffusion theory predicts
that the thermal diffusivity is given as χαql = v

α
thDmag for the

author’s e-mail: kanno@nifs.ac.jp

collisionless limit [6, 10], where α is a particle species, vαth
the thermal velocity, Dmag =

∑
πqRax|δB(m/n)

r /Bt|2 the mag-
netic diffusion coefficient, Rax the major radius of the mag-
netic axis, q the safety factor, δBr the strength of the RMPs,
and Bt the toroidal component of the magnetic field. In
collisionless edge ergodized plasma, the experimental ther-
mal diffusivity χex is inconsistent with the prediction of the
stochastic diffusion theory χql = vthDmag; χe

ex/χ
e
ql � 1/10

for electron thermal diffusivity [8]. Small RMPs cause
complete suppression of the ELM events, and have a neg-
ligible effect on energy confinement.

The above experimental results for torus plasmas im-
ply that conventional modeling of edge transport in mag-
netic islands and ergodic regions should be reconsidered
for a lower collisionality case, and kinetic modeling is re-
quired for understanding stochastic transport in the ergodic
region [11]. In order to understand fundamental proper-
ties of collisionless edge plasma in magnetic islands and
ergodic regions, and to take a new look at the model-
ing of transport from the viewpoint of kinetic treatment,
we attempt a simulation study of neoclassical transport in
magnetic islands and ergodic regions. Here, even in the
field line structure disturbed by the RMPs, Coulomb col-
lision causes a transition between a passing particle orbit
and a trapped particle orbit in toroidal and helical ripples
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(localized and/or blocked particle orbits) [12]; in the
present paper we call it the neoclassical effect on trans-
port phenomena. Recently, we developed a new transport
simulation code without the assumption of nested flux sur-
faces; the KEATS code [13, 14]. The code is programmed
by expanding the well-known Monte-Carlo particle simu-
lation scheme based on the δ f method [15–17]. By using
the KEATS code, it is possible to execute the investiga-
tion. In this paper, we apply the KEATS code to a torus
plasma having the ergodic region in the edge, and discuss
the interpretation of the simulation results. Here, because
of a limited computational time, we treat ions (protons) in
our first numerical study of transport in the ergodic region.
The details of the simulation model are briefly introduced
in Sec. 2. In Sec. 3, the simulation results are shown. Fi-
nally, discussion and summary are given in Sec. 4.

2. Simulation Model
We consider that a guiding center distribution function

of plasma f = f (t, x, v, ξ) is separated into an equilibrium-
like background f0 and a kinetic part δ f of the distribution,
f = f0 + δ f , where the kinetic part δ f is considered as a
small perturbation from f0, v = |u|, ξ = v‖/v, v‖ = u · b, b =
B/B, B = |B|, and B a magnetic field. The zeroth-order
distribution function f0 is given as a local Maxwellian dis-
tribution f0 = fM(x, v) = n{m/(2πT )}3/2 exp{−mv2/(2T)},
where m is the particle mass, n = n(x) the density, and
T = T (x) the temperature. Applying the decomposition
f = fM + δ f to the drift kinetic equation, we have the fol-
lowing equation of the kinetic part δ f :

D
Dt
δ f = −

{
D
Dt

fM −CF fM

}
, (1)

where the operator D/Dt is defined as D/Dt := ∂/∂t+ (u‖+
ud) · ∇ + a · ∂/∂u − CT, u‖ = v‖b is the parallel velocity, ud
the drift velocity of guiding center motion, and a the accel-
eration. In time-evolution of the δ f part, the background
fM is assumed to be fixed because the background is in a
quasi steady-state from the viewpoint of the δ f part. The
test particle collision operator CT is given, for simplicity,
as

CT =
νdef

2
∂

∂ξ

(
1 − ξ2

) ∂
∂ξ
, (2)

and it can be implemented numerically by random kicks
in velocity space, which represents the Coulomb scatter-
ing process, where νdef is the deflection frequency. Here,
we should note the statistical accuracy of the operator
CT expressed by the Monte-Carlo method [18], especially
around |ξ| ≈ 1. The operator CF is the field particle colli-
sion term, which represents local momentum conservation
(CF is needed to treat accurately the parallel transport):

CF = νdef
m
T
u · u0, (3)

and u0 is given as

u0 =

∫
d3v νdef u δ f

/∫
d3v νdef

mv2

3T
fM. (4)

In general, effects of an electric field and neutrals are im-
portant in edge transport, but in the present paper, these
effects are neglected for simplicity. (The modeling of ef-
fect of a fluctuating field is discussed in Refs. [14, 19].)

To solve Eq. (1) by Monte-Carlo techniques, we adopt
the two-weight scheme of the δ f formulation [15–17]:

Dg
Dt
= 0, (5)

Dw
Dt
= −Dp

Dt
+

p
fM

CF fM, (6)

Dp
Dt
=

p
fM

D fM
Dt
, (7)

where g is the marker distribution function, w and p are
the weight functions satisfying pg = fM and wg = δ f . The
Monte-Carlo simulation code, KEATS, is programmed in
an Eulerian coordinate system, i.e., the so-called helical
coordinates [5], and thus, the code does not need magnetic
flux coordinates. Simulation results (e.g., estimation of the
particle and energy fluxes) of the KEATS code for a case
of a simple tokamak field agreed with the results of the
“FORTEC-3D” code [16,17], which is a drift kinetic equa-
tion solver and uses magnetic flux coordinates.

3. Simulation Results
For investigating radial transport in the ergodic region,

we use a magnetic configuration formed by adding RMPs
into a simple tokamak field with concentric circular flux
surfaces, where the major radius of the magnetic axis Rax =

3.6 m, the minor radius of the plasma a = 1 m, and the
magnetic field strength on the axis Bax = 4 T. The unper-
turbed magnetic field is given as BR = −(BaxRax/q)Z/R2,
Bϕ = −BaxRax/R, and BZ = (BaxRax/q)(R − Rax)/R2 [20],
where q is the safety factor and q−1 = 0.8 − 0.78(r/a)4,
and r =

√
(R − Rax)2 + Z2. The RMPs causing resonance

with, for example, the rational surfaces of q = m/n =
2/1, 3/1, 4/1, . . . are numerically given by using the per-
turbation field generated by the island control coils of
LHD [21–23], and the order of the strength is O(|δBr/Bt|)
∼ 10−3. The perturbation field is calculated from the Biot-
Savart law applying filament currents in the island con-
trol coils shown in Fig. 2 of Ref. [23]. For example, the
m/n = 1/1 component is created mainly by the dipole field
generated by four pairs of the island control coils (two ad-
joining pairs are located at the opposite side (changing 180
degrees in the toroidal direction) of the other two pairs),
and the m/n = 2/1 component is given mainly by the cusp
field generated by the other two pairs, and so on. Here,
each island control coil located above the torus is paired
with the coil located just below it; the coil system consists
of ten pairs of the coils located above and below the torus.
The Poincaré plots of the magnetic field lines on a poloidal
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Fig. 1 Poincaré plots of the magnetic field lines on a poloidal
cross section. The m/n = 2/1 magnetic island appears in
the ergodic region.

cross section are shown in Fig. 1. The ergodic region ap-
pears in r/a ≈ 0.7∼ 1. In the KEATS code, the number of
marker particles is NMP = 16, 000, 000.

To investigate effect of the existence of the ergodic re-
gion on the transport phenomena, we evaluate the energy
flux of ions (protons) Qi for our first numerical study of the
transport, because the evaluation of electron energy flux is
highly time-consuming. The calculation time for ions is
about 40 hr in real time to get the result with sufficient nu-
merical accuracy by using a vector-parallel supercomputer
SX-7, and the calculation time for electrons is estimated to
be about 40 (≈ √mi/me) times that for ions if the number
of PEs (processing elements) is fixed, where 64 PEs are
used in this paper.

The evaluation of the ion energy flux is carried out in
the configuration having higher edge temperature Tedge ∼ 1
keV at a center of the ergodic region. The temperature
profile is given as Ti = Tax{0.02 + 0.98 exp[−4(r/a)7.86]}
with Tax = 2 keV, which neglects the existence of the er-
godic region. The density profile is homogeneous, ni =

const. = 1× 1019 m−3. The radial profile of the energy flux
estimated from the KEATS computations is shown as red
closed circles in Fig. 2; the maximum value of the effec-
tive radial-thermal-diffusivity χi

eff is estimated as χi
eff ≈ 0.9

m2/s at r/a ≈ 0.8, where χi
eff = Q(KEATS)

r /(ni|∂Ti/∂r|), and
Q(KEATS)

r is the radial energy flux evaluated by the KEATS
code. For simplicity, the radial energy fluxes are given
by neglecting the existence of the ergodic region, because
we have no magnetic coordinate system including several
magnetic field structures as the core and ergodic regions.
The energy flux Qi is averaged over a concentric circular
shell region including all toroidal angles as if there were
nested flux surfaces. Here, in the KEATS computations,
the energy flux is given as [14]

Qi(x) =
∫

d3v
miv2

2
(u‖ + ud)δ f , (8)

Fig. 2 Radial profile of the ion energy flux Q(KEATS)
r for higher

edge temperature, where r =
√

(R − Rax)2 + Z2, and
Poincaré plots of the field lines are illustrated in Fig. 1.
The center of the ergodic region is located at r/a ≈ 0.8.

Fig. 3 Comparison between the radial energy flux without
RMPs (green closed rhombuses) and with RMPs (blue
closed squares for the case illustrated in Fig. 4; red closed
circles for the case illustrated in Fig. 1), where r =√

(R − Rax)2 + Z2 and the temperature profile is the same
as in Fig. 2, i.e., Ti = Tax{0.02 + 0.98 exp[−4(r/a)7.86]}
with Tax = 2 keV. These fluxes are evaluated by the
KEATS code.

where · · · denotes the time-average, and the averaging time
is longer than the typical time scale of δ f (both the orbit
and collision times). It is confirmed that the energy flux
evaluated by the KEATS code becomes quasi-steady after
a sufficient amount of time.

The radial profile of the flux Q(KEATS)
r in Fig. 2 shows

that the motion along a field line in the ergodic region is
dominant in the transport for the lower collisionality case.
As shown in Figs. 3 and 4, the radial transport is strongly
affected by the existence of the ergodic region rather than

S1060-3



Plasma and Fusion Research: Regular Articles Volume 3, S1060 (2008)

Fig. 4 Poincaré plots of the magnetic field lines on a poloidal
cross section, where the half strength of the RMPs illus-
trated in Fig. 1 is added into the simple tokamak field.
The ergodic region around the m/n = 2/1 magnetic is-
land located at r/a ≈ 0.8 is invisible in this case.

the m/n = 2/1 island itself. Here, the ergodic region is
invisible in the case of Fig. 4 where the half strength of the
RMPs illustrated in Fig. 1 is added into the simple tokamak
field, and in this case, the radial transport at r/a ≈ 0.8 is
given mainly by the guiding center motions around the O-
point of the m/n = 2/1 island. The interpretation of the
simulation results is discussed in detail in Appendix.

4. Discussion and Summary
We have been developing a drift kinetic equation

solver, KEATS, to study transport phenomena in the is-
lands and ergodic regions. We apply the code to an edge
disturbed by resonant magnetic perturbations under the as-
sumption of neglecting effects of an electric field and neu-
trals, and find that the radial energy transport is strongly af-
fected by the existence of the ergodic region rather than the
magnetic islands. Detailed comparison between the simu-
lation and the stochastic diffusion theory is needed, but it
is left in future study.

Statistical properties of the guiding center orbits in
the ergodic region are previously studied in monoenergetic
test-particle simulations in detail [24]. Doubts over the va-
lidity of the stochastic diffusion theory for the collision-
less limit has been reported. Furthermore, the analytical
study of radial transport in Appendix supports this result.
Therefore, we interpret that the strong energy flux in the
lower collisionality region is not caused by “field line dif-
fusion.” As shown in Ref. [24], a guiding center orbit in
the ergodic region is not Brownian for a lower collisional-
ity case, thus in the present paper the flux is used to study
fundamental properties of the transport in the ergodic re-
gion, instead of the transport coefficient. We should note
that in the stochastic diffusion theory, the ergodic region is
assumed to be not bounded radially. There is a possibil-

ity that the application of the stochastic diffusion theory is
not appropriate for estimating the transport coefficients in
the radially bounded ergodic region with lower collisional-
ity [24].

For a lower collisionality case, the transport is
strongly affected by the existence of the ergodic region.
The strong neoclassical flux causes time-evolution of the
background described by the fluid equations. Further sim-
ulation study of the transport by simultaneously solving
both the kinetic and fluid equations is needed for under-
standing of the collisionless edge ergodized plasma; the
interim report of developing the KEATS code is written in
Ref. [14].

The remainder of the problem is the evaluation of the
electron energy flux. We are improving the KEATS code
for reducing the calculation time. The simulation results
will be reported in the near future.
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Appendix. Stochastic Analysis of Ra-
dial Transport in a Perturbed Field

In general, a fluid equation representing edge plasma
transport in a steady-state corresponds to a stochastic
differential equation described as dXi

t = γU
i(Xt)dt +

ci
j(Xt)dW j

t and i, j = 1, 2,3 [25, 26], where γ is a con-
stant (e.g., γ = 5n/2 for the heat balance equation if
n = const.), U = (U1,U2,U3) a steady-state flow,
Di j = ci

kg
k�c j
�

a diffusion coefficient, gk� a metric coef-
ficient, Xt = (X1

t , X
2
t , X

3
t ) a diffusion process, and Wt =

(W1
t ,W

2
t ,W

3
t ) a Brownian process. It is assumed that a

fluid is exposed to noise caused by resonant magnetic per-
turbations (RMPs), and that fluid particle motion is de-
scribed by an Itô process dYi

t = γŨ
i(t, ω)dt + ci

j(Yt)dW j
t ,

instead of the process Xt, where the flow is represented
as Ũ(t, ω) = U(Yt) + “noise” and satisfies the condition
P
{∫ t

0

∣∣∣Ũ(s, ω)
∣∣∣ ds < ∞ for all t ≥ 0

}
= 1. P(A) denotes the

probability of an event A, ω a fluid particle label, and
“noise” a random function having zero mean and finite
strength. (The definition of an Itô process is given in de-
tail in Ref. [27].) It is known that an Itô process Yt co-
incides in law with a diffusion process Xt if and only if
Ex0 [Ũ(t, ω)|PY

t ] = U(Yt) [27], where X0 = Y0 = x0 is a
starting point of a fluid particle at t = 0, PY

t is the σ-algebra
generated by the set {Y s; 0 ≤ s ≤ t}, and Ex0 [· · · |PY

t ] de-
notes the conditional expectation with respect to PY

t . This
theorem means that the “noise” cannot cause diffusion in
configuration space. We should reconsider the reason why
the noise created by RMPs affect the radial transport.
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Let us take the following collision operator:

C( f ) = νcol
∂

∂u
·
{

u f + v2th
∂ f
∂u

}
, (A.1)

where νcol = νcol(x) is the collision frequency, vth the ther-
mal velocity, and u = U+u the velocity of a guiding center,
and U = U(x) the mean velocity [28]. The operator (A.1)
is simpler, but is used only to get a rough idea of colli-
sional effects [29]. We consider the motion of a guiding
center along a field line for estimation of radially spread-
ing the guiding centers by their parallel motions in a per-
turbed magnetic field. The guiding center motion exposed
to the collisions (A.1) is given as an Ornstein-Uhlenbeck
process:

dx = udt = (U + u)dt, (A.2)

du = −νcoludt + σdW‖t, (A.3)

where U = U‖b, u = u‖b, σ = vth
√
νcol, W‖t a Brown-

ian process for the parallel direction, i.e., dW‖t = bdWt,
b = B/B the unit vector along a field line, and B the un-
perturbed magnetic field. Here, the effects of toroidal and
helical ripples are neglected for simplicity. The equations
(A.2) and (A.3) are integrated respectively as

x = x0 +

∫ t

0
(U + u)ds, (A.4)

u = e−νcoltu0 +

∫ t

0
e−νcol(t−s)σdW‖s, (A.5)

where x0 and u0 are the initial values at t = 0. Here, vth
and νcol are constant along a field line. The effect of a
perturbation field on the motion is interpreted as noise on
the motion along a field line of B. If the effect is expressed
by a linear operator ũ = Ñu, then

dx = (u + ũ)dt = (u + Ñu)dt, (A.6)

where Ñ is assumed to be smooth with respect to t. Recall
that the statistical properties of neoclassical radial diffusion
in a magnetic configuration having nested flux surfaces
are confirmed through direct comparison with a Brownian
process in configuration space given by tracing monoener-
getic test particle orbits [30]. We consider the radial trans-
port in the ergodic region through the same way, see also
Ref. [24].

For the collisional limit t � 1/νcol (νcol → ∞), the
diffusion (caused by the perturbation field) in configuration
space is derived from Eq. (A.6)

dx ≈ (1 + Ñ)Udt +
vth√
νcol

(1 + Ñ)dW‖t, (A.7)

i.e., for the collisional limit, the diffusion in velocity space
directly becomes the diffusion in configuration space (see
the second term in the right-hand side of Eq. (A.7)). Note
that the diffusion in configuration space originates from the
collisions in velocity space. When the RMPs are added to
the unperturbed magnetic field having nested flux surfaces,

the parallel motion of a guiding center may cause radial
fluctuation. If the noise ũ = (ṽ1, ṽ2, ṽ3) is given as

ṽi = (Ñu)i =

∣∣∣∣∣δBr

Bt

∣∣∣∣∣ ε
i jk

√
g
θ̂ jvk φ̃(t; i), (A.8)

then the radial diffusivity Dr = D‖|δBr/Bt|2 is obtained
for the collisional limit, where θ̂ is the unit vector for the
poloidal direction, δBr the strength of the RMPs satisfying
|δBr/Bt| � 1, Bt the toroidal component of B, g = det

(
gi j

)
the square of Jacobian, εi jk the Levi-Civita symbol, φ̃(t; i)
the ith component of a zero mean random vector having a
mean square of E

[
φ̃2
]
= 1 and being independent of dW‖t,

and D‖ = v2th/νcol the parallel diffusivity [31]. Note that
in the monoenergetic test-particle simulation [24], the ra-
dial behavior of the guiding center orbits for the collisional
limit is observed numerically to be a standard diffusion
process.

For the collisionless limit (νcol → 0), the noise term
Ñ(U + u0), i.e., the motion along a field line, is dominant
in the expression of the guiding center orbits. This noise
term cannot cause diffusion in configuration space even if
the ergodic region extends boundlessly, as shown in the
first paragraph in this section; see also Refs. [14, 19, 27].
The radial transport should be treated in the framework of
the theory based on the statistics of the guiding center mo-
tions exposed to the collisions in velocity space (i.e., the
theory given by solving the drift kinetic equation), rather
than the theory based on the “field line diffusion” without
collisions. Note that it is not a trivial problem whether the
radial flux in the ergodic region for a lower collisionality
case can be estimated only by tracing monoenergetic test
particle orbits, because the radial behavior of the test par-
ticle orbits is not a Brownian process [24]. Thus, in the
present paper we employ the drift kinetic equation solver
to obtain the distribution function of the guiding centers.

The above discussion shows that for a lower collision-
ality plasma (t � 1/νcol), the motions are not interpreted as
the diffusion process predicted by the stochastic diffusion
theory.
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