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Derivation of Jump Conditions in Multiphase Incompressible
Flows with Singular Forces
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For conducting numerical simulations of plasma dynamics consisting of multiple phases, a new immersed in-
terface method (IIM) scheme to solve multiphase flows with different viscosities and densities is being developed.
The jump conditions for velocity, pressure, and their derivatives necessary for the finite difference approximations
in the IIM are derived. The derivation results in sets of coupled equations that can be solved numerically by an
iterative method.
c© 2008 The Japan Society of Plasma Science and Nuclear Fusion Research

Keywords: discontinuity, jump condition, immersed interface method

DOI: 10.1585/pfr.3.S1052

1. Introduction
Clarifying key physics of complex behaviors of a hot

plasma in a magnetic confinement device such as Large
Helical Device (LHD) is essential for understanding exper-
imental results. For this purpose, various kinds of simula-
tion studies such as magnetohydrodynamics (MHD), two-
fluid, Vlasov, and gyrokinetic simulations have been con-
ducted (see, for example, Refs. [1–3]). The MHD simula-
tion class is the simplest among them in the sense that the
system of equations consists of a relatively few number of
equations, and the number of dimensions of the indepen-
dent variable space is only three. Nevertheless, there still
remain many difficulties mimicking the real device geom-
etry in detail. One of those difficulties is in connecting the
hot plasma region and the vacuum region, which is com-
plicated because the governing equations of these regions
can be different from each other.

In MHD simulations, the vacuum region is often de-
scribed by MHD equations with very low pressure and/or
mass density or simply omitted from the simulation by
imposing boundary conditions on the outermost magnetic
surface. For the purpose of studying the effects of plasma
deformations around the hot plasma boundary or to study
peripheral regions and hot plasma core simultaneously, the
former approach is preferable. In the former simulations,
very large resistivity and/or viscosity are assumed to the
low pressure region. However, jumps of physical vari-
ables such as mass density, pressure, and temperature often
cause numerical oscillations. Although such oscillations
may be avoided by adopting numerical techniques such
as the Godunov/CIP or TVD schemes (see, for example,
Refs. [4,5]), the computation program often becomes com-
plex and the numerical accuracy can become ambiguous.
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The immersed interface method (IIM) is a class of nu-
merical schemes for partial differential equations involv-
ing interfaces and irregular domains. It is a sharp inter-
face method that can accurately capture discontinuities in
the solution and the flux. It has been applied to vari-
ous problems including the simulation of electromigration
of voids, Stefan problems, and incompressible flows with
moving interfaces [6]. The basic properties of the IIM are
as follows [6]: (1) prior knowledge of jump conditions ei-
ther from physical reasoning or derived from the govern-
ing equations and (2) modifications of finite difference ap-
proximations at grid points near the interface, based on the
jump conditions.

In the present paper, a moving surface separating two
regions of a fluid or two fluids that the fluid(s) cannot flow
across is called a singular surface. Singular forces such
as surface tension or membrane elastic tension act on this
singular surface affecting the dynamics of the fluid-surface
system. A cage of the magnetic field lines separating the
hot plasma core from the peripheral regions can be mod-
eled as a singular surface.

Recently, Xu and Wang [7–9] developed an IIM re-
lated scheme to simulate the motion of an incompressible
neutral fluid separated into two regions by a singular sur-
face. The jump conditions in such a system were derived
analytically [7]. They are then used [8, 9] in finite differ-
ence simulations based on the generalized Taylor expan-
sion [7].

While the scheme of Xu and Wang can be applied to
many problems, it still has limitations, which may be es-
sential for our aim to apply the scheme to hot plasma prob-
lems. One of them is that their scheme is not applicable to
flows with variable density and/or viscosity, that is, mul-
tiphase flows. In this paper, we derive jump conditions in
a multiphase incompressible flow where the viscosity and
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the mass density are discontinuous across the singular sur-
face. The results can be used to develop an IIM scheme
for such multiphase flows. By extending it to multiphase
flows, we take one important step to make the IIM appli-
cable to fusion plasma simulations.

2. Governing Equations and IIM Dis-
cretization
A schematic view of the system we are concerned with

is given in Fig. 1. The fluid density ρ and the viscosity µ
are piecewise constant in Ω+ and Ω−. We consider the sit-
uation that a singular force is applied on the closed surface
S . It is emphasized that the separation of the two fluid
phases is sustained by this singular force.

Using the index notation and the summation conven-
tion, the incompressible Navier-Stokes equations subject
to a singular force are

ρ

(
∂ui

∂t
+ u j ∂ui

∂x j

)
= − ∂p

∂xi +
∂

∂x j

(
µ
∂ui

∂x j + µ
∂u j

∂xi

)
+ Fi, (1)

∂ui

∂xi = 0, (2)

where xi (i = 1, 2,3) is in Cartesian coordinates, t is time,
ui is velocity, p is pressure, and Fi is the singular force.
The singular force is given by

Fi =

∫
S

f i
(
α1, α2, t

)
δ
(
x − X

(
α1, α2, t

))
dα1dα2, (3)

where X
(
α1, α2, t

)
denotes the coordinates of a point

on the singular surface, δ
(
x − X

(
α1, α2, t

))
is a three-

Fig. 1 Schematic view of two fluids separated by a singular sur-
face.

dimensional Dirac delta function, f i
(
α1, α2, t

)
is the sur-

face force density, and
(
α1, α2

)
are Lagrangian parameters

of points on the surface at a reference time (see Fig. 2). The
singular surface moves with the local fluid velocity

∂Xi
(
α1, α2, t

)
∂t

= ui
(
X

(
α1, α2, t

)
, t
)
. (4)

Taking the divergence of eq. (1), we obtain a Poisson equa-
tion for pressure.

∂2 p
∂xi∂xi =

∂Fi

∂xi +
∂

∂xi

{
∂

∂x j

(
µ
∂ui

∂x j

)}

+
∂

∂xi

{
∂

∂x j

(
µ
∂u j

∂xi

)}
− ∂

∂xi

(
ρ

Dui

Dt

)
, (5)

where
D
Dt
=
∂

∂t
+ u j ∂

∂x j .

These governing equations can be solved numerically
on a fixed Cartesian mesh using the IIM finite difference
discretization derived systematically by Xu and Wang [7].
Here, we describe the IIM discretization briefly. The reader
is referred to [7] for the derivation.

Consider the function g (x) in Fig. 2. It is smooth ex-
cept at the discontinuity points ξ and η (note that xi−1 <

ξ < xi and xi < η < xi+1). In this case, the first and second
derivatives at xi are given by

dg (xi)
dx

=
g (xi+1) − g (xi−1)

2 h

− 1
2 h

⎛⎜⎜⎜⎜⎜⎜⎝
2∑

n=0

[
g(n) (ξ)

]
n!

(xi−1 − ξ)n

+

2∑
n=0

[
g(n) (η)

]
n!

(xi+1 − η)n

⎞⎟⎟⎟⎟⎟⎟⎠ + O
(
h2

)
, (6)

Fig. 2 g(x) is discontinuous at ξ and η. Ordinary finite difference
formulae do not hold at xi.
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d2g (xi)
dx

=
g (xi+1) − 2g (xi) + g (xi−1)

h2

+
1
h2

⎛⎜⎜⎜⎜⎜⎜⎝
3∑

n=0

[
g(n) (ξ)

]
n!

(xi−1 − ξ)n

−
3∑

n=0

[
g(n) (η)

]
n!

(xi+1 − η)n

⎞⎟⎟⎟⎟⎟⎟⎠ + O
(
h2

)
, (7)

where h = xi−xi−1 = xi+1−xi, and [∗] = ∗+−∗− denotes the
jump of a quantity across a discontinuity (the jump condi-
tion for a quantity).

The finite differences in Eqs. (6) and (7) can be used
to approximate the spatial derivatives appearing in the gov-
erning equations, only if the jump conditions for the veloc-
ity, pressure, and their first and second order spatial deriva-
tives are known (the accuracy will be first order for the sec-
ond order derivatives). Therefore, the derivation of these
jump conditions is a prerequisite for solving the governing
equations by the IIM.

3. Principal Jump Conditions
To prepare for the derivation of the jump conditions,

we introduce some notations related to the geometry of the
singular surface. Differentiating X, two tangent vectors
along the Lagrangian parameter lines are obtained.

τi =
∂X
∂αi (i = 1, 2) . (8)

The three components of τi are denoted by
(
τ1

i , τ
2
i , τ

3
i

)
. The

unit vector n normal to the surface is given by

n =
1
J

(τ1 × τ2) , (9)

J = |τ1 × τ2| . (10)

We also introduce three mutually orthogonal unit vectors
as τ = τ1/|τ1|, n, b = n× τ (see Fig. 3). Note that these
three vectors satisfy the following identity.

nink = δik − τiτk − bibk. (11)

We define a coordinate transformation

xi = xi
(
α1, α2, α3; t

)
, αi = αi

(
x1, x2, x3; t

)
, (12)

Fig. 3 Cartesian coordinates, curvilinear coordinates, unit nor-
mal and tangential vectors.

where α3 is a new coordinate with

x
(
α1, α2, α3 = 0; t

)
= X

(
α1, α2, t

)
, (13)

and chosen to satisfy

∂x
(
α1, α2, α3 = 0; t

)
∂α3 = n, (14)

implying

∇α3 = n. (15)

Let f̃ i be a contravariant component of the surface force
density in the curvilinear coordinate system. It is related to
f i by

f̃ i =
∂αi

∂x j f j . (16)

The jump of a physical quantity ψ across the singular
surface is denoted as

[
ψ
] (
α1, α2, t

)
= (ψ)+

(
X

(
α1, α2, t

)
, t
)

− (ψ)−
(
X

(
α1, α2, t

)
, t
)
, (17)

where the superscript (+) denotes the Ω+side, while (−) de-
notes the Ω− side.

The principal jump conditions are derived as follows.
First, no slip condition on the singular surface implies the
continuity of the velocity across the surface.

[
ui
]
= 0 . (18)

Differentiating this equation with respect to t yields
[
∂ui

∂t

]
+ u j

[
∂ui

∂x j

]
= 0 , (19)

which states that the acceleration is also continuous across
the surface.

Take an infinitesimal area δS = J δα1δα2on the singu-
lar surface S . Translate δS in the directions of n and −n by
ε/2, and denote the swept region as δV . Integrate Eq. (1)
over δV and take the limit ε→ 0.

lim
ε→0

∫
δV
ρ

(
∂ui

∂t
+ u j ∂ui

∂x j

)
dV = lim

ε→0

∫
δV

FidV

+ lim
ε→0

∫
δV

∂

∂x j

{
−pδi j + µ

(
∂ui

∂x j +
∂u j

∂xi

)}
dV .

(20)

From this equation, we obtain the following jump condi-
tions (see Appendix A for the detailed calculation).

[
p
]
=

f ini

J
+ 2

[
µ
∂ui

∂x j

]
n jni , (21)

[
µ
∂ui

∂x j

]
n j +

[
µ
∂u j

∂xi

]
n j

f knkni − f i

J
+ 2

[
µ
∂uk

∂x j

]
n jnkni. (22)
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Next, we derive the jump condition for the normal
derivative of pressure. Take control volume Vs, which is
a layer with thickness ε containing the singular surface S .
Multiply Eq. (5) by an arbitrary smooth function φ (x), in-
tegrate over Vs, and take the limit ε→ 0.

lim
ε→0

∫
Vs

φ
∂2 p
∂xi∂xi dV = lim

ε→0

∫
Vs

φ
∂Fi

∂xi dV

+ lim
ε→0

∫
Vs

φ
∂

∂xi

{
∂

∂x j

(
µ
∂ui

∂x j

)
+

∂

∂x j

(
µ
∂u j

∂xi

)}
dV

− lim
ε→0

∫
Vs

φ
∂

∂xi

(
ρ

Dui

Dt

)
dV . (23)

By applying the generalized Gauss theorem [7], the coor-
dinate transformation, and some other manipulations, the
following jump condition can be derived from this equa-
tion (see Appendix B for the detailed calculation).[

∂p
∂xi

]
ni =

1
J

(
∂ f̃ 1

∂α1 +
∂ f̃ 2

∂α2

)

+2
∂

∂τ

([
µ
∂ui

∂x j

])
niτ j + 2

∂

∂b

([
µ
∂ui

∂x j

])
nib j

+

[
µ
∂ui

∂x j

] (
∂

∂τ

(
n jτi + niτ j

)

+
∂

∂b

(
n jbi + nib j

))
− [
ρ
] Dui

Dt
ni . (24)

4. Scaled Velocity and Augmented
Variables
We transform the velocity into a scaled velocity as

vi = µ ui, (25)

and introduce augmented variables

qi
(
α1, α2, t

)
=

[
vi
]
, (26)

defined only on the singular surface. Note that using the
scaled velocity for x � S , Eqs. (1) and (5) become

ρ

µ

∂vi

∂t
+
ρ

µ2 v
j ∂v

i

∂x j = −
∂p
∂xi +

∂2vi

∂x j∂x j , (27)

∂2 p
∂xi∂xi = −

ρ

µ2

∂v j

∂xi

∂vi

∂x j . (28)

We emphasize here that the transformation into the scaled
velocity and the introduction of the augmented variables
will simplify both the coupled equations for the jump con-
ditions and the numerical solution of the multiphase flow.

5. Jump Conditions of Spatial Deriva-
tives
In this section, we derive jump conditions for deriva-

tives of the scaled velocity and pressure. First, differentiat-
ing Eq. (26) with respect to αm (m = 1, 2) yields

[
∂vi

∂x j

]
τ

j
m =

∂qi

∂αm . (29)

Using Eq. (11), Eq. (22) becomes
[
∂vi

∂x j

]
n j +

[
∂v j

∂xi

]
n j =

fnni − f i

J

−2
∂q j

∂τ
τ jni − 2

∂q j

∂b
b jni , (30)

where fn = f ini. Eqs. (29) and (30) form a set of equations
that can be written explicitly as

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

τ1
1 τ2

1 τ3
1 0 0 0 0 0 0

τ1
2 τ2

2 τ3
2 0 0 0 0 0 0

2n1 n2 n3 n2 0 0 n3 0 0
0 0 0 τ1

1 τ2
1 τ3

1 0 0 0
0 0 0 τ1

2 τ2
2 τ3

2 0 0 0
0 n1 0 n1 2n2 n3 0 n3 0
0 0 0 0 0 0 τ1

1 τ2
1 τ3

1
0 0 0 0 0 0 τ1

2 τ2
2 τ3

2
0 0 n1 0 0 n2 n1 n2 2n3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

×

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

[
∂v1/

∂x1

]
[
∂v1/

∂x2

]
[
∂v1/

∂x3

]
[
∂v2/

∂x1

]
[
∂v2/

∂x2

]
[
∂v2/

∂x3

]
[
∂v3/

∂x1

]
[
∂v3/

∂x2

]
[
∂v3/

∂x3

]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂q1

∂α1

∂q1

∂α2

R1
v

∂q2

∂α1

∂q2

∂α2

R2
v

∂q3

∂α1

∂q3

∂α2

R3
v

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (31)

where

Ri
v =

fnni − f i

J
− 2

∂q j

∂τ
τ jni − 2

∂qj

∂b
b jni. (32)

Next, we differentiate Eq. (21) with respect to
αm (m = 1, 2) to obtain

[
∂p
∂xi

]
τi

m =
∂

∂αm

(
fn
J
+ 2

[
∂vi

∂x j

]
n jni

)
. (33)

This equation and Eq. (24) form the following set of equa-
tions.

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
τ1

1 τ2
1 τ3

1
τ1

2 τ2
2 τ3

2
n1 n2 n3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ×

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

[
∂p
∂x1

]
[
∂p
∂x2

]
[
∂p
∂x3

]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂Rp

∂α1

∂Rp

∂α2

Rpn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(34)
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where

Rp =
fn
J
+ 2

[
∂vi

∂x j

]
n jni , (35)

Rpn =
1
J

(
∂ f̃ 1

∂α1 +
∂ f̃ 2

∂α2

)
+ 2

∂

∂τ

([
∂vi

∂x j

])
niτ j

+2
∂

∂b

([
∂vi

∂x j

])
nib j −

[
ρ
]

[
µ
] ∂qi

∂t
ni

+

[
∂vi

∂x j

] (
∂

∂τ

(
n jτi + niτ j

)
+
∂

∂b

(
n jbi + nib j

))
.

(36)

Differentiating Eq. (29) with respect to αn (n = 1, 2),
we obtain

[
∂2vi

∂x j∂xk

]
τ

j
mτ

k
n =

∂2qi

∂αm∂αn −
[
∂vi

∂x j

]
∂τ

j
m

∂αn . (37)

Differentiating Eq. (30) with respect to αm (m = 1, 2) leads
to [

∂2vi

∂x j∂xk

]
n jτk

m +

[
∂2v j

∂xi∂xk

]
n jτk

m

=
∂Ri

v

∂αm −
[
∂vi

∂x j

]
∂n j

∂αm −
[
∂v j

∂xi

]
∂n j

∂αm . (38)

From Eq. (27), it follows that

[
∂2vi

∂x j∂x j

]
=

[
∂p
∂xi

]
+

[
ρ
]

[
µ
] ∂qi

∂t
. (39)

Combining Eqs. (37)-(39), the following set of equations
is obtained.

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
C11 C12 C13

C21 C22 C23

C31 C32 C33

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

X1

X2

X3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A1

A2

A3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

B11 B12 B13

B21 B22 B23

B31 B32 B33

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

D1

D2

D3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (40)

where the block matrices in the first line of the expression
above are given as follows:

Xi =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

[
∂2vi

∂x1∂x1

]
[
∂2vi

∂x1∂x2

]
[
∂2vi

∂x1∂x3

]
[
∂2vi

∂x2∂x2

]
[
∂2vi

∂x2∂x3

]
[
∂2vi

∂x3∂x3

]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, Di =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

[
∂vi

∂x1

]
[
∂vi

∂x2

]
[
∂vi

∂x3

]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (41)

Ai =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂2qi

∂α1∂α1

∂2qi

∂α1∂α2

∂2qi

∂α2∂α2

∂Ri
v

∂α1

∂Ri
v

∂α2[
∂p
∂xi

]
+

[
ρ
]

[
µ
] ∂qi

∂t

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (42)

C11 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
τ1

1

)2
2 τ1

1τ
2
1 2 τ1

1τ
3
1

τ1
1τ

1
2 τ1

1τ
2
2 + τ

2
1τ

1
2 τ1

1τ
3
2 + τ

3
1τ

1
2(

τ1
2

)2
2 τ1

2τ
2
2 2 τ1

2τ
3
2

2 n1τ1
1 2 n1τ2

1 + n2τ1
1 2 n1τ3

1 + n3τ1
1

2 n1τ1
2 2 n1τ2

2 + n2τ1
2 2 n1τ3

2 + n3τ1
2

1 0 0
(
τ2

1

)2
2 τ2

1τ
3
1

(
τ3

1

)2

τ2
1τ

2
2 τ2

1τ
3
2 + τ

3
1τ

2
2 τ3

1τ
3
2(

τ2
2

)2
2 τ2

2τ
3
2

(
τ3

2

)2

n2τ2
1 n2τ3

1 + n3τ2
1 n3τ3

1

n2τ2
2 n2τ3

2 + n3τ2
2 n3τ3

2

1 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (43)

C12 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

n2τ1
1 n2τ2

1 n2τ3
1 0 0 0

n2τ1
2 n2τ2

2 n2τ3
2 0 0 0

0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (44)

C13 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

n3τ1
1 n3τ2

1 n3τ3
1 0 0 0

n3τ1
2 n3τ2

2 n3τ3
2 0 0 0

0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (45)

B11 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂τ1
1

∂α1

∂τ2
1

∂α1

∂τ3
1

∂α1

∂τ1
1

∂α2

∂τ2
1

∂α2

∂τ3
1

∂α2

∂τ1
2

∂α2

∂τ2
2

∂α2

∂τ3
2

∂α2

2
∂n1

∂α1

∂n2

∂α1

∂n3

∂α1

2
∂n1

∂α2

∂n2

∂α2

∂n3

∂α2

0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (46)
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B12 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0
0 0 0
0 0 0
∂n2

∂α1 0 0

∂n2

∂α2 0 0

0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

B13 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0
0 0 0
0 0 0
∂n3

∂α1 0 0

∂n3

∂α2 0 0

0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (47)

The other block matrices can also be derived easily.
Now, differentiating Eq. (33) with respect to

αn (n = 1, 2) yields
[
∂2 p
∂xi∂x j

]
τi

mτ
j
n =

∂2Rp

∂αm∂αn −
[
∂p
∂xi

]
∂τi

m

∂αn . (48)

Differentiating Eq. (24) with respect to αm (m = 1, 2)
yields

[
∂2 p
∂xi∂x j

]
niτ

j
m =

∂Rpn

∂αm −
[
∂p
∂xi

]
∂ni

∂αm . (49)

From Eq. (28), it follows that
[
∂2 p
∂xi∂xi

]
= −

[
ρ

µ2

∂v j

∂xi

∂vi

∂x j

]
. (50)

Eqs. (48)-(50) form the following set of equations.
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
τ1

1

)2
2τ1

1τ
2
1 2τ1

1τ
3
1

τ1
1τ

1
2 τ1

1τ
2
2 + τ

2
1τ

1
2 τ1

1τ
3
2 + τ

3
1τ

1
2(

τ1
2

)2
2τ1

2τ
2
2 2τ1

2τ
3
2

n1τ1
1 n1τ2

1 + n2τ1
1 n1τ3

1 + n3τ1
1

n1τ1
2 n1τ2

2 + n2τ1
2 n1τ3

2 + n3τ1
2

1 0 0

(
τ2

1

)2
2τ2

1τ
3
1

(
τ3

1

)2

τ2
1τ

2
2 τ2

1τ
3
2 + τ

3
1τ

2
2 τ3

1τ
3
2(

τ2
2

)2
2τ2

2τ
3
2

(
τ3

2

)2

n2τ2
1 n2τ3

1 + n3τ2
1 n3τ3

1

n2τ2
2 n2τ3

2 + n3τ2
2 n3τ3

2

1 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

×

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

[
∂2 p

∂x1∂x1

]
[
∂2 p

∂x1∂x2

]
[
∂2 p

∂x1∂x3

]
[
∂2 p

∂x2∂x2

]
[
∂2 p

∂x2∂x3

]
[
∂2 p

∂x3∂x3

]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂2Rp

∂α1∂α1

∂2Rp

∂α1∂α2

∂2Rp

∂α2∂α2

∂Rpn

∂α1

∂Rpn

∂α2

Rpl

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂τ1
1

∂α1

∂τ2
1

∂α1

∂τ3
1

∂α1

∂τ1
1

∂α2

∂τ2
1

∂α2

∂τ3
1

∂α2

∂τ1
2

∂α2

∂τ2
2

∂α2

∂τ3
2

∂α2

∂n1

∂α1

∂n2

∂α1

∂n3

∂α1

∂n1

∂α2

∂n2

∂α2

∂n3

∂α2

0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

×

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

[
∂p
∂x1

]
[
∂p
∂x2

]
[
∂p
∂x3

]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (51)

where Rpl = −
[
ρ

µ2

∂v j

∂xi

∂vi

∂x j

]
.

Given qi, Eqs. (31), (34), (40), and (51) can be solved
for the other jump conditions. In addition to those equa-
tions and Eq. (26), we also have the following jump condi-
tion

[
vi

µ

]
= 0 , (52)

which is a result of the continuity of the velocity. Given
qi, and the jump conditions for the first order derivatives,(
vi/µ

)±
can be obtained using an interpolation scheme.

Thus, the equations can be solved numerically for all of
the unknowns by an iterative method described in subsec-
tion 6.1.

6. Numerical Application
6.1 Solving for the jump conditions and dis-

cretization of the governing equations
In this section, the scaled velocity, denoted by u =

(u, v, w), and the pressure are discretized on a fixed Carte-
sian regular grid as shown schematically in Fig. 4. The sin-
gular surface S is represented by Lagrangian markers. Co-
ordinates and other quantities at points of the surface other
than the Lagrangian markers are obtained using a suitable
interpolation scheme, such as the cubic spline interpola-
tion. In general, the grid lines intersect the singular sur-
face S at points that do not coincide with the grid points.
These points, such as K and L in Fig. 4, are called inter-
facial points. Grid points adjacent to an interfacial point,
such as M and N, are called irregular grid points. As de-
scribed in sections 1 and 2, obtaining the jump conditions
at interfacial points and modifying the finite differences at
irregular grid points constitute the essential parts in con-
structing an IIM method for simulating multiphase flows.

Consider point K in Fig. 4. It can be shown that the
values of the scaled velocity at K are given by the follow-
ing interpolation formulae [8]

u−K =
h−uN + h+uM

h
− h−

h
qK

−h−h+

h

[
∂u

∂x

]
K
+ O

(
h2

)
, (53)
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Fig. 4 Schematic view of a part of the Cartesian regular grid
near the singular surface. Dashed lines represent grid
lines. X’s represent Lagrangian markers.

u+K =
h−uN + h+uM

h
+

h+

h
qK

−h−h+

h

[
∂u

∂x

]
K
+ O

(
h2

)
, (54)

where q =
(
qx, qy, qz

)
= ([u] , [v] , [w]) denotes the aug-

mented variables, and h = h+ + h−. Now, substituting
Eqs. (53) and (54) into Eq. (52), treating qK as the un-
known, the following equation is obtained.

qK =

[
µ
]

h+µ− + h−µ+
(
h−uN + h+uM

)

−
[
µ
]

h−h+

h+µ− + h−µ+

[
∂u

∂x

]
K
+ O

(
h2

)
. (55)

Hence, to obtain the jumps of the first derivatives of the
scaled velocity and the augmented variables, Eq. (31) and
equations similar to Eq. (55) (which will be called collec-
tively as Eq. (55)) must be solved simultaneously at all in-
terfacial points. This can be done by an iterative method.
Initially, guessed values of q are substituted into the right
hand side (RHS) of Eq. (31). Eq. (31) is then
solved for [∂u/∂x] ,

[
∂u/∂y

]
, and [∂u/∂z]. Then, substi-

tuting the obtained values into the RHS of Eq. (55), new
guessed values of q are obtained. The entire procedure
is iterated until the values of q converge. After obtaining
the augmented variables and the jumps of the first deriva-
tives of the scaled velocity, Eqs. (34), (40), and (51) can
be solved for the remaining jump conditions. Thus, the
systems of equations in the previous section can be solved
numerically for all of the unknowns.

Next, an outline of the discretization of the governing
equations is described. Spatial derivatives in the Navier

Stokes equation Eq. (27) and the Poisson equation for pres-
sure with terms containing ∇ · u (given by Eq. (77) in Ap-
pendix C for the 2D case) are approximated by finite dif-
ferences. Using the jump conditions obtained by the pro-
cedure described in the previous paragraph, finite differ-
ences based on Eqs. (6) and (7) are applied at irregular grid
points. At regular grid points, central finite differences are
applied. The scaled velocity and the pressure can be ad-
vanced in time by well-known methods such as a combi-
nation of the MAC scheme and the Runge-Kutta scheme.
Solving Eq. (4), the coordinates of the Lagrangian markers
are also advanced in time simultaneously with the scaled
velocity and the pressure.

Note that it is assumed that the singular force den-
sity is known a priori or can be calculated from the local
configuration of the singular surface. We are particularly
interested in problems with singular force densities of the
latter kind for our future work. The normal force density
(determined by the curvature) resulting from surface ten-
sion and the force density resulting from elastic tensions
(determined by the strains) are typical examples of such
force densities. Quantities such as local curvature and lo-
cal strains can be calculated numerically because the sin-
gular surface is represented by Lagrangian markers and a
suitable interpolation scheme. The values can then be used
to obtain the singular force densities. Thus, it is possible
to model singular force densities such as those acting on
fluid-fluid interfaces or elastic membranes in the current
representation of the singular surface.

6.2 Numerical test
A numerical test is performed to verify that (1) the

procedure for obtaining the jump conditions, and (2) the
finite difference approximations Eqs. (6) and (7) yield cor-
rect results. We consider the shear flow described schemat-
ically in Fig. 5. Coordinate axes are taken as shown in the
figure. Two fluids, fluids 1 and 2, with different viscosities
and mass densities are separated by an infinite rigid plane
(plane B) parallel to the x−z plane and bounded by infinite
rigid planes A and C parallel to B. Plane B moves with (or-
dinary) velocity U in the x direction, while planes A and
C are stationary. The steady flow solution of this problem
is well known as the Couette flow. In the Couette flow, the
scaled velocity u (y) of each fluid varies linearly as shown
in Fig. 6a, and the pressure is constant everywhere. From
this analytical solution, the tangential singular force den-
sity on plane B can be obtained.

The region between planes A and C is discretized in
the y direction. At the grid points yi, the analytical solution
u (yi) is obtained. Substituting the tangential force density
into the equations for the jump conditions in two dimen-
sions given in Appendix C, jump conditions that agree with
the analytical results are obtained. The augmented vari-
able is then computed using Eq. (55). Finally, using the
obtained values of the jump conditions and the augmented
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Fig. 5 Shear flow between parallel infinite rigid planes. Plane A
is located at y = 0. Planes A and C are stationary. Plane
B moves with velocity U in the x direction.

Fig. 6 Comparisons between analytical and numerical results
for the flow described in Fig. 5. Panels (a), (b), and (c)
show profiles of the scaled velocity, its first derivative,
and its second derivative, respectively. Horizontal axes
show the y coordinate. Solid lines and dots represent an-
alytical and numerical results, respectively.

variable, the finite differences given by Eqs. (6) and (7) are
used to obtain the first and second derivatives of the scaled
velocity at the irregular grid points. The numerical results
for parameter values µ1 = 1, µ2 = 5, h1 = 1.3, h2 = 1.7,
U = 5, and grid interval ∆y = 0.3 are shown in Fig. 6. Fig-
ures 6a, b, and c show the profiles of the scaled velocity,
its first derivative, and its second derivative, respectively.
It can be seen that the numerical derivatives agree well
with the analytical derivatives at all grid points including
the irregular points. These numerical results show that our
algorithm is suitable for computations of two fluids with
different densities and viscosities separated by a wall.

7. Concluding Remarks
Jump conditions in multiphase incompressible flows

with singular forces and discontinuities in viscosity and
density have been derived. The results are sets of equations
that are solvable numerically by an iterative method. These
jump conditions can be used to develop an IIM scheme

for simulating multiphase flows with discontinuous vis-
cosity and density. A numerical code implementing the
discretization schemes described in subsection 6.1 is cur-
rently being developed.

Ito and Li [10] derived the jump conditions in Stokes
flow with singular forces and discontinuous viscosity.
Other than in the inclusion of density jump, our deriva-
tion is more general and conclusive than their, in the sense
that our results are explicit relations in a three-dimensional
fixed Cartesian coordinate system, whereas their results
were explicit relations in a two-dimensional special coor-
dinate system.

We finally remark that, although the current formula-
tion is for incompressible flows, jump conditions for com-
pressible flows, thermal quantities, and/or magnetic field
can also be derived in a manner similar to our derivation
reported in this article. Extension of the IIM to thermal
plasma simulations is also under consideration.

Appendix A. Derivation of Eqs. (21)
and (22)

The left hand side of Eq. (20) vanishes since the inte-
grand is bounded. By the definition of Fi, the first term on
the right hand side (RHS) of Eq. (20) becomes

lim
ε→0

∫
δV

FidV = f i δα1δα2 (A.1)

Applying the Generalized Gauss Theorem [7] to the sec-
ond term on the RHS of Eq. (20) yields

lim
ε→0

∫
δV

∂

∂x j

{
−pδi j + µ

(
∂ui

∂x j +
∂u j

∂xi

)}
dV

=

(
− [

p
]
ni +

[
µ
∂ui

∂x j

]
n j +

[
µ
∂u j

∂xi

]
n j

)
δS . (A.2)

Substituting the above results into Eq. (20), the fol-
lowing equation is obtained.

− [
p
]
ni +

[
µ
∂ui

∂x j

]
n j +

[
µ
∂u j

∂xi

]
n j +

f i

J
= 0 (A.3)

Multiplying this equation by ni leads to Eq. (21). Eq. (22)
is obtained by substituting Eq. (21) back into Eq. (A.3).

Appendix B. Derivation of eq. (24)
The term on the left hand side (LHS) of Eq. (23) can

be written as

lim
ε→0

∫
V s
φ
∂2 p
∂xi∂xi dV = lim

ε→0

∫
V s

∂

∂xi

(
φ
∂p
∂xi

)
dV

− lim
ε→0

∫
V s

∂

∂xi

(
∂φ

∂xi p
)

dV + lim
ε→0

∫
V s

∂2φ

∂xi∂xi p dV.

(B.1)

The third term on the right hand side (RHS) of the above
equation vanishes because the integrand is bounded. Ap-
plying the Generalized Gauss Theorem (GGT) to the first
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and second terms on the RHS, we obtain

lim
ε→0

∫
Vs

φ
∂2 p
∂xi∂xi dV =

∫
S
φ

[
∂p
∂xi

]
nidS

−
∫

S

[
p
] ∂φ
∂n

dS . (B.2)

By the definition of Fi, the first term on the RHS of
Eq. (23) becomes

lim
ε→0

∫
Vs

φ
∂Fi

∂xi dV = − lim
ε→0

∫
Vs

∂φ

∂xi Fi dV

= −
∫

S
f i ∂φ

∂xi dα1dα2. (B.3)

Applying the coordinate transformation, this can be written
as

−
∫

S
f i ∂φ

∂xi dα1dα2 = −
∫

S
f knk ∂φ

∂n
dα1dα2

−
∫

S

(
f̃ 1 ∂φ

∂α1 + f̃ 2 ∂φ

∂α2

)
dα1dα2

= −
∫

S
f knk ∂φ

∂n
dα1dα2

−
∫

S

(
∂

∂α1

(
f̃ 1φ

)
+

∂

∂α2

(
f̃ 2φ

))
dα1dα2

+

∫
S
φ

(
∂ f̃ 1

∂α1 +
∂ f̃ 2

∂α2

)
dα1dα2. (B.4)

Due to the assumption that S is a closed surface, the sec-
ond term on the last RHS of Eq. (B.4) vanishes. Thus, the
following equation is obtained.

lim
ε→0

∫
Vs

φ
∂Fi

∂xi dV = −
∫

S
f knk ∂φ

∂n
dα1dα2

+

∫
S
φ

(
∂ f̃ 1

∂α1 +
∂ f̃ 2

∂α2

)
dα1dα2. (B.5)

Next, we calculate the second term on the RHS of
Eq. (23).

lim
ε→0

∫
Vs

φ
∂

∂xi

{
∂

∂x j

(
µ
∂ui

∂x j

)
+

∂

∂x j

(
µ
∂u j

∂xi

)}
dV

= lim
ε→0

∫
Vs

φ
∂

∂xi

{
∂

∂x j

(
µ
∂ui

∂x j

)}
dV

+ lim
ε→0

∫
Vs

φ
∂

∂xi

{
∂

∂x j

(
µ
∂u j

∂xi

)}
dV. (B.6)

The first term on the RHS of this equation can be written
as

lim
ε→0

∫
Vs

φ
∂

∂xi

{
∂

∂x j

(
µ
∂ui

∂x j

)}
dV

= lim
ε→0

∫
Vs

∂

∂xi

{
φ
∂

∂x j

(
µ
∂ui

∂x j

)}
dV

− lim
ε→0

∫
Vs

∂

∂x j

{
∂φ

∂xi µ
∂ui

∂x j

}
dV

+ lim
ε→0

∫
Vs

∂2φ

∂xi∂x j µ
∂ui

∂x j dV. (B.7)

The last term on the RHS of Eq. (B.7) vanishes since the
integrand is bounded. Hence, applying the GGT, we obtain

lim
ε→0

∫
Vs

φ
∂

∂xi

{
∂

∂x j

(
µ
∂ui

∂x j

)}
dV

=

∫
S
φ

[
µ
∂2ui

∂x j∂x j

]
nidS −

∫
S

[
µ
∂ui

∂x j

]
n j ∂φ

∂xi dS .

(B.8)

The second term on the RHS of Eq. (B.6) can be written as

lim
ε→0

∫
Vs

φ
∂

∂xi

{
∂

∂x j

(
µ
∂u j

∂xi

)}
dV

=

∫
S
φ

[
µ
∂2u j

∂xi∂x j

]
nidS −

∫
S

[
µ
∂u j

∂xi

]
n j ∂φ

∂xi dS

+ lim
ε→0

∫
V s

∂2φ

∂xi∂x j µ
∂u j

∂xi dV, (B.9)

where the GGT has been applied to obtain the first and
second terms on the RHS. The first term on the RHS of
this equation equals zero due to the incompressibility con-
dition, and the last term vanishes because the integrand is
bounded. Therefore, we obtain

lim
ε→0

∫
Vs

φ
∂

∂xi

{
∂

∂x j

(
µ
∂u j

∂xi

)}
dV

= −
∫

S

[
µ
∂u j

∂xi

]
n j ∂φ

∂xi dS (B.10)

Using Eq. (11), the RHS of Eq. (B.8) and Eq. (B.10)
can be calculated further. First, it is easy to see that∫

S

[
µ
∂ui

∂x j

]
n j ∂φ

∂xi dS

=

∫
S

[
µ
∂ui

∂x j

]
n jni ∂φ

∂n
dS

+

∫
S

[
µ
∂ui

∂x j

]
n jτi ∂φ

∂τ
dS +

∫
S

[
µ
∂ui

∂x j

]
n jbi ∂φ

∂b
dS

=

∫
S

[
µ
∂ui

∂x j

]
n jni ∂φ

∂n
dS

−
∫

S
φ
∂

∂τ

{[
µ
∂ui

∂x j

]
n jτi

}
dS

−
∫

S
φ
∂

∂b

{[
µ
∂ui

∂x j

]
n jbi

}
dS

+

∫
S

∂

∂τ

{[
µ
∂ui

∂x j

]
n jτiφ

}
dS

+

∫
S

∂

∂b

{[
µ
∂ui

∂x j

]
n jbiφ

}
dS . (B.11)

The sum of the last two terms of this equation vanishes
because S is a closed surface. It follows that∫

S

[
µ
∂ui

∂x j

]
n j ∂φ

∂xi dS =
∫

S

[
µ
∂ui

∂x j

]
n jni ∂φ

∂n
dS

−
∫

S
φ

{[
µ
∂2ui

∂x j∂xk

]
n j

(
τiτk + bibk

)}
dS

−
∫

S
φ

{[
µ
∂ui

∂x j

] (
∂

∂τ

(
n jτi

)
+
∂

∂b

(
n jbi

))}
dS .

(B.12)
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Using Eq. (11) again, and taking the incompressibility con-
dition into account, this equation becomes∫

S

[
µ
∂ui

∂x j

]
n j ∂φ

∂xi dS =
∫

S

[
µ
∂ui

∂x j

]
n jni ∂φ

∂n
dS

+

∫
S
φ

[
µ
∂2ui

∂x j∂xk

]
n jninkdS

−
∫

S
φ

{[
µ
∂ui

∂x j

] (
∂

∂τ

(
n jτi

)
+
∂

∂b

(
n jbi

))}
dS . (B.13)

By following arguments similar to those in the previ-
ous paragraph, it can be shown that the RHS of Eq. (B.10)
becomes∫

S

[
µ
∂u j

∂xi

]
n j ∂φ

∂xi dS =
∫

S

[
µ
∂u j

∂xi

]
n jni ∂φ

∂n
dS

−
∫

S
φ

[
µ
∂2u j

∂xi∂xi

]
n jdS

+

∫
S
φ

[
µ
∂2u j

∂xi∂xk

]
n jninkdS

−
∫

S
φ

{[
µ
∂u j

∂xi

] (
∂

∂τ

(
n jτi

)
+
∂

∂b

(
n jbi

))}
dS . (B.14)

Next, we calculate the last term on the RHS of
Eq. (23). Using the GGT and Eq. (19), we obtain

lim
ε→0

∫
Vs

φ
∂

∂xi

(
ρ

Dui

Dt

)
dV = − lim

ε→0

∫
V s

∂φ

∂xi ρ
Dui

Dt
dV

+ lim
ε→0

∫
V s

∂

∂xi

(
φρ

Dui

Dt

)
dV

=

∫
S
φ

[
ρ
] Dui

Dt
nidS , (B.15)

where the first term on the first RHS equals zero since the
integrand is bounded.

Substituting Eqs. (B.2), (B.5), (B.6), (B.8), (B.10),
(B.13), (B.14), and (B.15) into Eq. (23), and rearranging
terms, lead to∫

S
φ

{[
∂p
∂xi

]
ni − 1

J

(
∂ f̃ 1

∂α1 +
∂ f̃ 2

∂α2

)
+

[
ρ
] Dui

Dt
ni

−2
[
µ
∂2ui

∂x j∂x j

]
ni + 2

[
µ
∂2ui

∂x j∂xk

]
nin jnk

−
([
µ
∂ui

∂x j

]
+

[
µ
∂u j

∂xi

]) (
∂

∂τ

(
n jτi

)

+
∂

∂b

(
n jbi

))}
dS

=

∫
S

∂φ

∂n

{[
p
] − f ini

J
− 2

[
µ
∂ui

∂x j

]
n jni

}
dS . (B.16)

According to Eq. (21), the RHS of Eq. (B.16) vanishes.
Since φ is arbitrary, it follows that the integrand of the LHS
must equal zero. Therefore, the following equation is ob-
tained. [

∂p
∂xi

]
ni =

1
J

(
∂ f̃ 1

∂α1 +
∂ f̃ 2

∂α2

)
+ 2

[
µ
∂2ui

∂x j∂x j

]
ni

−2
[
µ
∂2ui

∂x j∂xk

]
nin jnk

+

[
µ
∂ui

∂x j

] (
∂

∂τ

(
n jτi + niτ j

)

+
∂

∂b

(
n jbi + nib j

))
− [
ρ
] Dui

Dt
ni . (B.17)

Applying Eq. (11), this equation becomes Eq. (24).

Appendix C. Jump Conditions in 2D
Flows

In this appendix, we are concerned with two-
dimensional multiphase flows. A schematic view of the
system is given in Fig. 7. It is to be understood that all
quantities that appear henceforth are non-dimensionalized.
The Cartesian coordinates, the scaled velocity, and the
pressure are denoted by x = (x, y) , u = (u, v) , and p,
respectively. The coordinates of a point of the singu-
lar curve C are denoted by X

(
α1, t

)
, where α1 is the

Lagrangian parameter of the points of the curve at a
reference time. The singular force is now defined by
F =

∫
C f

(
α1, t

)
δ
(
x − X

(
α1, t

))
dα1, where f

(
α1, t

)
is the curve force density, and δ

(
x − X

(
α1, t

))
is a two-

dimensional delta function. Geometrical quantities, τ1 =

∂X/∂α1, J = |τ1| , τ = τ1/J, and n =
(
τy,−τx

)
, are also

introduced. For x � C, the Navier-Stokes equation and the
Poisson equation for pressure are given by

ρ

µ

∂u

∂t
+
ρ

µ2∇ · (uu) = − ∇p +
1

Re
∆u , (C.1)

∆p = −ρ
µ

∂D
∂t
− ρ

µ2∇ · (uD)

+2
ρ

µ2

(
∂u
∂x

∂v

∂y
− ∂u
∂y

∂v

∂x

)
+

1
Re
∆D ,

(C.2)

where Re is the Reynolds number, and D = ∇ · v.
The systems of equations for the jump conditions in

the 2D case, which can be obtained from our 3D results by
taking one direction as uniform, are:

[u] = qx, [v] = qy, (C.3)

Fig. 7 Schematic view of a two-dimensional multiphase flow
with singular force.
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⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

τ1x τ1y 0 0
2nx ny ny 0
0 0 τ1x τ1y

0 nx nx 2ny

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

[
∂u/∂x

]
[
∂u/∂y

]
[
∂v/∂x

]
[
∂v/∂y

]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂qx
/
∂α1

Rvx
∂qy

/
∂α1

Rvy

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(C.4)[
p
]
= Rp, (C.5)(

τ1x τ1y

nx ny

) ⎛⎜⎜⎜⎜⎜⎝
[
∂p/∂x

]
[
∂p/∂y

]
⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝ ∂Rp
/
∂α1

Rpn

⎞⎟⎟⎟⎟⎠ , (C.6)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

τ2
1x 2τ1xτ1y τ2

1y
2nxτ1x 2nxτ1y + nyτ1x nyτ1y

1 0 1
0 0 0
0 nxτ1x nxτ1y

0 0 0

0 0 0
nyτ1x nyτ1y 0

0 0 0
τ2

1x 2τ1xτ1y τ2
1y

nxτ1x 2nyτ1x + nxτ1y 2nyτ1y

1 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
×

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

[
∂2u

/
∂x2

]
[
∂2u

/
∂x∂y

]
[
∂2u

/
∂y2

]
[
∂2v

/
∂x2

]
[
∂2v

/
∂x∂y

]
[
∂2v

/
∂y2

]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= −

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂τ1x
/
∂α1 ∂τ1y

/
∂α1 0 0

2∂nx
/
∂α1 ∂ny

/
∂α1 ∂ny

/
∂α1 0

0 0 0 0
0 0 ∂τ1x

/
∂α1 ∂τ1y

/
∂α1

0 ∂nx
/
∂α1 ∂nx

/
∂α1 2∂ny

/
∂α1

0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

[
∂u/∂x

]
[
∂u/∂y

]
[
∂v/∂x

]
[
∂v/∂y

]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂2qx
/
∂α12

∂Rvx
/
∂α1

Re
{[
∂p

/
∂x

]
+

[
ρ
]/[
µ
]∂qx

/
∂t

}
∂2qy

/
∂α12

∂Rvy
/
∂α1

Re
{[
∂p

/
∂y

]
+

[
ρ
]/[
µ
]∂qy

/
∂t

}

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (C.7)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
τ2

1x 2τ1xτ1y τ2
1y

nxτ1x nxτ1y + nyτ1x nyτ1y

1 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

[
∂2 p

/
∂x2

]
[
∂2 p

/
∂x∂y

]
[
∂2 p

/
∂y2

]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂2Rp
/
∂α12

∂Rpn
/
∂α1

Rpl

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ −
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂τ1x
/
∂α1 ∂τ1y

/
∂α1

∂nx
/
∂α1 ∂ny

/
∂α1

0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

×
⎛⎜⎜⎜⎜⎜⎜⎜⎝

[
∂p/∂x

]
[
∂p/∂y

]
⎞⎟⎟⎟⎟⎟⎟⎟⎠ , (C.8)

where the jump condition for the scaled velocity (the aug-
mented variables) is denoted by q = [u], and the other
quantities appearing on the right hand sides are defined by

Rvx = Re
(

fn nx − fx

J

)
− 2

(
∂qx

∂τ
τx +

∂qy
∂τ

τy

)
nx, (C.9)

Rvy = Re
(

fn ny − fy
J

)
− 2

(
∂qx

∂τ
τx +

∂qy
∂τ

τy

)
ny, (C.10)

Rp =
fn
J
+

2
Re

([
∂u
∂x

]
n2

x +

[
∂u
∂y

]
nynx

+

[
∂v

∂x

]
nxny +

[
∂v

∂y

]
n2
y

)
, (C.11)

Rpn =
1
J
∂ fτ1

∂α1 +
2

Re
∂

∂τ

([
∂u
∂x

])
nxτx

+
2

Re
∂

∂τ

([
∂u
∂y

])
nxτy

+
2

Re
∂

∂τ

([
∂v

∂x

])
nyτx +

2
Re

∂

∂τ

([
∂v

∂y

])
nyτy

−
[
ρ
]

[
µ
]
(
∂qx

∂t
nx +

∂qy
∂t

ny

)
+

2
Re

[
∂u
∂x

]
∂

∂τ
(nxτx)

+
1

Re

[
∂u
∂y

]
∂

∂τ

(
nyτx + nxτy

)

+
1

Re

[
∂v

∂x

]
∂

∂τ

(
nxτy + nyτx

)

+
2

Re

[
∂v

∂y

]
∂

∂τ

(
nyτy

)
, (C.12)

Rpl = 2
[
ρ

µ2

(
∂u
∂x

∂v

∂y
− ∂u
∂y

∂v

∂x

)]
, (C.13)

fn = fxnx + fyny , (C.14)

fτ1 =
fxτx + fyτy

J
. (C.15)
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