
Plasma and Fusion Research: Regular Articles Volume 3, S1045 (2008)

Data Analysis Techniques for Microwave Imaging Reflectometry
Z.B. SHI, Y. NAGAYAMA1), S. YAMAGUCHI1), Y. HAMADA1) and Y. HIRANO2)

The Graduate University for Advanced Studies, Toki 509-5292, Japan
1)National Institute for Fusion Science, Toki 509-5292, Japan

2)National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8568, Japan

(Received 11 December 2007 / Accepted 14 March 2008)

A data analysis technique for microwave imaging reflectometry (MIR) in the Large Helical Devices (LHD)
and TPE-RX plasmas has been investigated. In LHD, the fast Fourier transform (FFT) is employed. The statistical
properties of the fluctuation spectra on MIR signals are quantified by the time-frequency analysis by the ensemble
average technique. Statistical analyses using cross-correlation and coherence spectra reveal the characteristics of
MHD modes, such as wave numbers, mode numbers, and phase velocity. In TPE-RX, the wavelet analysis is
more useful because the phenomena are transient in TPE-RX plasma.
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1. Introduction
Turbulence and instabilities have been considered to

correlate with the properties of confinement, and thus, the
spatial structure of the fluctuation continues to be the basic
issue in the fluctuation study. Microwave imaging reflec-
tometry (MIR) has been applied to the Large Helical De-
vice (LHD) and TPE-RX [1, 2]. This technology is based
upon the reflection of microwaves at the density-dependent
cutoff layer, and the fluctuating phase of the reflected wave
is dominated by the density fluctuation close to the cutoff
layer. The reflecting signal has rich physics phenomena,
which include the plasma turbulence and MHD instabili-
ties [1–5].

Fluctuation signals often submerge in the strong back-
ground noises, such as electronic noise and thermal noise,
especially when the reflection surface is in the core plasma
region. After the onset of the turbulence, the spectrum be-
comes broad. The large-scale turbulence eddy may cause
distortion of the spectrum. Therefore, observations are dif-
ficult from the oscillation even in the frequency domain.

Many digital noise reduction methods have been de-
veloped in previous studies [6–8]. These methods use sta-
tistical features of random noises, whose power spectral
density is similar in all frequency bands. The expected er-
ror rate of the ensemble average decreases monotonically
as a function of the number of the data sets in the ensemble
average. Therefore, the statistical analysis of a fluctuating
quantity over a long period of time may be useful to pickup
fluctuating signals.

The short-time Fourier transform can show the time
evolution of the fluctuation spectrum. The frequency reso-
lution becomes worse at high-time resolutions. Therefore,
it is difficult to obtain the time evolution of the rapid chang-
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ing mode by short-time Fourier analysis. On the other
hand, the wavelet transform is one of the most useful meth-
ods for the fluctuation analysis. It can analyze the time se-
ries that contains non-stationary frequencies or multi-scale
structures by revealing the similar structures in the corre-
lation.

This study presents the quantifying methods for the
statistical properties of the fluctuation spectra based on
MIR signals. Section 2 introduces the experiments in
LHD. The FFT analysis method and the effects of ensem-
ble average on the noise reduction in the spectrum are pre-
sented in Section 3. In Section 4, the cross-correlation
analysis is applied to MIR data in LHD. Wavelet analy-
sis is used to the TPE-RX plasma in Section 5. Significant
results are as follows: the FFT spectrum with the ensemble
average technique has been analyzed quantitatively to re-
duce the noise; this technique reveals three types of modes
during high-power neutral beam injection (NBI) heating
in LHD; the wavelet analysis shows higher time and fre-
quency resolutions, and small structures are observed.

2. Experiment in LHD
Present MIR system on LHD has three antennas that

separate in the toroidal and poloidal directions. A probe
beam with frequencies of 53, 66, and 69 GHz in either the
O- or the X-mode illuminates the plasma [1, 2]. The il-
luminating beam is parallel to the 20 cm diameter in the
plasma, which is limited by the window of LHD. The re-
ceiving focus spot size in the plasma is about 3-4 cm in
diameter. The beam separation is about 8.4-10 cm in the
toroidal direction and 10-12 cm in the poloidal direction
on the cutoff surface. Therefore, there is no overlapping
between neighboring channels. The injection paths of the
beams are optimized, which is in agreement with the ray
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tracing simulation. The fluctuation signals are measured
by the heterodyne receivers with a sampling frequency of
1 MHz. As an example of data analysis, we present an
analysis of one shot (75414). This plasma has a toroidal
magnetic field of 1.5 T and a major radius of 3.6 m, and
is heated by the co-injected NBI with power of 2.5 MW
and counter-injected NBI with power of 1 MW between t
= 0.3 and 2.3 s. The ECH with the total power of 1.2 MW
is injected between t = 1.4 and 2.0 s. The plasma beta is
about 0.75% between t = 0.9 and 2.3 s. Since X-mode is
used in MIR, the cutoff surface is determined by both the
toroidal magnetic field and the electron density.

The density profile is obtained from the Thomson
scattering by calibration using a microwave interferome-
ter, of which the chord is equivalent to the laser beam of
the Thomson scattering. The density profile is distorted
due to misalignment of the laser beam. Also, the plasma
center is shifted outward due to the Shafranov shift. Fig-
ure 1 shows the calibration of the density profile at 1.6 s.
The red closed circles indicate the experimental data. The
temperature has a peaked profile, but the density profile is
strongly deformed and shows a declining trend, which is
caused by the misalignment of the laser beam.

To recover the density profile, we assume that the den-
sity and temperature are uniform on a same magnetic sur-
face. Firstly, polynomial fittings are used for the tempera-
ture and density profiles,

Te fit(R) =
N∑

n=0
anRn,

ne fit(R) =
N∑

n=0
bnRn,

(1)

where R is the radius, and an and bn are the fitting coef-
ficients. We use N = 4 for the temperature fitting and N
= 8 for the density fitting. Before fitting, the data that are
greatly apart from other data are removed. The plasma cen-
ter (R0) is determined from the temperature profile. Sec-
ondly, we assume that the ne fit(R) includes a linear trend
since ne fit(R) = ne cali(R)(1 + c(R − R0)). Therefore, the
density profile can be corrected as

ne cali(R) = ne fit(R)/(c(R − R0) + 1), (2)

where c is the slope of the linear fitting of the density
profile. The density profile becomes quasi-symmetric (the
blue solid line shown in Fig. 1(b)). Then, the density pro-
file is adjusted by averaging the density ne cali(R) at the
same temperature surface. Finally, the absolute density
profile (black solid line shown in Fig. 1(c)) is calibrated, as
the line-integrated density equals to the microwave inter-
ferometer density. Figure 1(e) shows the normalized den-
sity and temperature profiles, which can be used to check
the quality of the density reconstruction.

The cutoff frequency is obtained by calculating the
plasma density and the toroidal magnetic field. Then the
cutoff surface can be determined. As shown in Fig. 1(d),

Fig. 1 Calibration of the reflection layer by Thomson data, (a)
electron temperature profile, (b) electron density profile
(before and after calibration), (c) the electron density pro-
file after calibrated by microwave interferometer, (d) the
toroidal magnetic field (Bt) and the X-mode cutoff fre-
quency ( fr). (e) The normalized density and temperature
profiles. The red dots are experimental data. The large
discrete peaks are removed before fitting.

the cutoff layer of 53 GHz is close to the plasma axis; how-
ever, for the layers of 66 and 69 GHz, there are no cutoff
layers, and the detectors receive interferential signals. We
only analyze the reflection signals of 53 GHz illumination
below. The plasma density is almost equal, and the cut-
off layer of 53 GHz varies from 3.75 to 4.0 m (the nor-
malized radius is about 0.15-0.4 m) between t = 0.9 and
2.3 s. Therefore, the curvature radius of the cutoff sur-
face (≥ 15 cm) is larger than the illuminating beam radius
(10 cm). The imaging of the fluctuation at the cutoff sur-
face can be obtained using the MIR system.

3. FFT Analysis with the Ensemble
Average
The frequency spectrum and the phase are obtained by

Fourier analysis. The Fourier transformation X(ω) of the
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signal x(t) is given by

X(ω, t) =
∫ t+∆t

t−∆t
w(t′)x(t′)e− jωt′dt′, (3)

where w(t) is the Hanning window function, which is used
to reduce the leakage of the sideband. The short-time FFT
analysis is used to show the time evolution of the spectrum.

In many situations, the signal from the plasma con-
tains random noise. Sometimes its amplitude in the fre-
quency domain is higher than the signal that we are in-
terested in, and it masks the useful information. By the
ensemble average technique in the frequency domain, the
amplitude of the random fluctuations has an average power
level in all frequency ranges. The ensemble average has
less influence on the mode whose amplitude does not
change in the ensemble time. Using a test parameter com-
posed of a sinusoid and a random function, the qualitative
effect of the noise on the signal in the frequency spectrum
is shown.

The definitions of the signal-to-noise (S/N) ratio in
the time and frequency domains are illustrated in Fig. 2(a)
and (b), respectively. They are defined as the amplitude
ratio between the test signal and random noise. Figure
2(c) shows the ratio between the absolute amplitude of the
Fourier component at the frequency of the test signal and
the amplitude of the noise in the frequency domain versus
the S/N ratio in the time domain. Therefore, the y-axis
can be called as the S/N ratio in frequency domain. The
FFT time window is set as 2 ms. Here, the black solid line
denotes the ratio without average, and the others are that
with different ensemble numbers. The S/N ratio in the fre-
quency domain increases with the ensemble number. A
larger ensemble number is suggested for lower S/N signal.
Figure 2(d) shows the relative ratio between the S/N sig-
nal in the frequency domain and the S/N signal in the time
domain versus the ensemble number. The ratio changes
greatly with the time window, but not with the signal fre-
quency. The time window reflects the frequency broaden-
ing. It implies that the frequency broadening affects the
present S/N. The ratio decreases with the frequency width.
It becomes saturated as the ensemble number increases.
Therefore, the improvement by the ensemble average on
the noise reduction becomes weak at a larger ensemble
number. The saturated threshold of the ensemble average
with a long time window is smaller than that with a short
time window. If the S/N ratio is lower than 1%, it is diffi-
cult to obtain the signal, even with a large ensemble num-
ber.

We assume 1.5 as the discriminating level of the FFT
spectrum; in other words, the FFT amplitude of the sig-
nal is 1.5 times higher than the maximum amplitude of
the noise in the frequency domain. By the ensemble av-
erage technique, the value is about 0.03, while it is about
0.1 without the ensemble average using a 2 ms time win-
dow. The distinguishable value mainly depends on the fre-
quency broadening, and not on the signal frequency. This

Fig. 2 Effects of S/N on the FFT spectrum. (a) definition of S/N
in time domain (S/N = 1 case), (b) definition of S/N in
frequency domain (S/N = 0.1 case), (c) the S/N in fre-
quency domain versus S/N ratio in time domain, here, the
y-axis is the ratio between the FFT amplitude of the test
signal and the maximum amplitude of background fluctu-
ation in frequency domain; (d) The relative ratio between
S/N in frequency domain and S/N in time domain as a
function of ensemble numbers. The signals with different
frequency show similar ratio at 2 ms time window. The
relative ratios with 1 ms and 4 ms time window are also
plotted.

simulation only shows the qualitative effect of the noise on
the signal. For the quantitative estimation, the frequency
broadening should be considered. In conclusion, the en-
semble technique is an effective way to reduce noise. This
method requires that the lifetime of the mode be longer
than the time window of the FFT. If not, the signal might
be distorted by the averaging and the new analysis method
that has both high-time and high-frequency ability, should
be used, e.g., wavelet transforms [9, 10].

As an example of FFT analysis by the ensemble av-
erage technique for analyzing the MIR signals is shown in
Fig. 3, which shows the power spectrum with/without the
ensemble average at 1.6 s. Here, the 4-ms time window is
used for the power spectrum without the average, and 50
FFT windows with the time scale of 2 ms each are used
for the power spectrum with the ensemble average. With-
out the ensemble average, the MHD modes are concealed
in the strong background fluctuations. The fluctuation is
reduced with the ensemble average. If all the fluctuation
components represent white noise, the fluctuations should
be reduced to 0.14, such as the fluctuations at 60-80 kHz
and 30-50 kHz. The average has less impact on the mode
frequency. With the ensemble average, the fluctuation of
the power is reduced significantly, and the MHD modes
clearly appear.

Figure 4 shows the contour plot of the time evolution
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Fig. 3 Power spectrum at 1.6 s (Top: without average and 4 ms
time window is used. Bottom: with ensemble average, 50
data sections with the time scale of 2 ms each are used.)

Fig. 4 Time-frequency plot of FFT spectrum, the bottom is the
cutoff position.

of the frequency spectrum and the cutoff radius. Three
types of fluctuations appear in the MIR signals. In the low-
frequency range, the density fluctuation has a fundamental
frequency of 2.3 kHz and its higher harmonics. It appears
at 0.7 s when observing the cutoff surface, and disappears
after turning off the NBI power. The cutoff surface varies
from 3.75 to 4.0 m between t = 0.8 and 2.3 s. It seems that
the onset of this mode depends on the power of the neu-
tral beam, and the frequency of this mode relates to the
ion temperature [11]. At t = 0.9 s, a mid-frequency mode
(∼23 kHz) with a wide profile appears when the plasma
temperature increase to flat top. When turning on the ECH
power, this frequency increases to 26 kHz, and it disap-
pears after turning off the ECH power. When turning on the
ECH power, a high-frequency mode (∼55 kHz) appears.
This is in the range of the Alfvén frequency. The mode
frequency increases with time, and it is up to 70 kHz at

t = 2.2 s. This mode exists after turning off the ECH power,
indicating that this mode may be related to the energetic
ion mode, but it is induced by the energetic electrons.

4. Cross-Correlation Analysis
The cross-power spectral analysis is used to identify

the two time series that have similar spectral properties.
The cross-power spectrum between the two time series x(t)
and y(t) is defined as

Gxy(ω) = Y(ω)X(ω)∗, (4)

where the asterisk (*) denotes the complex conjugate.
X(ω) and Y(ω) are the discrete Fourier transforms of the
time series x(t) and y(t), respectively. The phase shift be-
tween the two time series is given by

Φxy(ω) = tan−1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Im

[
Gxy(ω)

]
Re

[
Gxy(ω)

]
⎫⎪⎪⎪⎬⎪⎪⎪⎭ . (5)

In order to obtain the phase shift whose value corre-
sponds to a high correlation in the frequency domain, the
coherence spectrum is introduced, and it is defined by the
cross-power spectrum normalized by the total power as

γxy(ω) =
| < Gxy(ω) > |√

< Gxx(ω) >< Gyy(ω) >
, (6)

where the bracket (<>) denotes ensemble average. The
coherency is bounded between 0 and 1, and the high value
corresponds to high correlation, and zero represents com-
pletely uncorrelated. The statistical confident level of the
coherence spectrum is determined by the number of the in-
dependent time series (1/

√
N).

The phase-frequency spectrum shows the dispersion
relations of the MHD mode and turbulence with a distinct
phase shift and propagation direction in a two-dimensional
plot. It can be obtained by the two-point cross-correlation
method,

S (Φ, ω) =
〈
|Gxy(ω)|δ

(
Φxy(ω) −Φ

)〉
. (7)

In the calculation, the delta function is replaced by a
rectangular window. The width of the window depends on
the number of the discrete sections in the value range of
Φxy(ω). The phase velocity and the mode number can be
obtained from the distance between two detecting points of
the wave number. Substituting the phase shift for the wave
number in Eq. (7), the wave number frequency spectrum
[7] can be obtained.

Figure 5 shows the cross-power spectrum, coherence,
and phase shift by the ensemble average method. Note that
when calculating the cross-power and the coherence spec-
tra, FFT is performed at every 200 data sections with the
time period of 4 ms each. The overlap between the neigh-
boring sections is half of the time window. Before calculat-
ing the spectrum, the mean value and the linear trend have
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Fig. 5 Cross-power spectrum, coherence and phase shift in the
poloidal direction at t = 1.6 s.

been removed from every time series. When the mode ap-
pears, the cross-power spectrum is peaked, and coherence
becomes high. The phase shift versus frequency shows
smaller jumps.

Figure 6(a) and (c) shows the contour plots of the
phase-frequency spectra, log(S (Φ, ω)), in the poloidal and
toroidal directions at t = 1.5 s, respectively. The highlight
color corresponds to the large amplitude. When the mode
appears, the phase shift has a peaked profile. Note that
the phase shift has a broad profile, especially in the low-
frequency mode. One possible reason is that the strong ef-
fects of the turbulence may cause the distorted distribution
of the spectrum. Another reason might be the noise. The
width of the phase shift profile slightly decreases with in-
creasing independent time events, and becomes constant at
large time events. In this analysis, the independent events
are sufficient for the ensemble average, although the life-
time of the mode is not very long. Even so, the phase shift
can be obtained from the fitting profile of the phase spec-
trum.

The phase shift at the peak of the fitting profile is
close to the ensemble phase shift <Φxy(ω)>. As shown
in Fig. 6(b), the poloidal phase shift is about 0.05π at f =
4.4 kHz. It is the same as the phase shift in Fig. 5. There-
fore, the poloidal wave-number and mode number are k =
1.5 m−1 and m ∼ 1, respectively. The toroidal phase shift
is about 0.07π at f = 4.4 kHz. The toroidal wave number
and mode number are k = 2.6 m−1 and n ∼ 9, respectively.
The mode numbers of the 26 and 56 kHz are m = 2/n = 20,
m/n = 3/26, respectively. Assuming that the half width at
half maximum (HWHM) of the fitting curve is the phase
error, the errors of the poloidal mode numbers are about
1. The errors of the toroidal mode numbers are about 20.
The phase shift has a linear trend, and the average phase
velocity ω/k is about 15 km/s.

The noise distorts not only the power spectrum but
also the phase spectrum. When the signal is too weak,
the average phase spectrum <Φxy(ω)> largely fluctuates,
as seen between 60 and 80 kHz in Fig. 5. In Fig. 6 (a) and
(c), the phase shift spectrum has a broad profile. The phase

Fig. 6 (a) The phase-frequency spectrum, log(S(θ, f )), in
poloidal direction at t = 1.5 s, (b) The fitting of the
poloidal phase shift at f = 4.4 kHz, (c) The phase-
frequency spectrum, log(S(ϕ, f )), in toroidal direction at
t = 1.5 s, (d) The fitting of the toroidal phase shift at f =
4.4 kHz

Fig. 7 The half width of the phase profile with different ensem-
ble numbers versus S/N ratio in the phase frequency spec-
trum

shift at the peak of the fitting curve is the average phase
shift. The noise level of the raw signal can be estimated
from the width of the phase shift. Here, the width of the
phase shift profile is defined as the half width over 10%
maximum in the phase shift spectrum.

Figure 7 shows the width of the phase shift versus the
S/N ratio. The width decreases rapidly as the S/N ratio in-
creases. It shows the same width if the S/N ratio is larger
than 0.05. The average over a few ensemble numbers at
small S/N ratio shows a broadening profile. The width be-
comes constant by averaging over the large ensemble num-
bers, for example, the ensemble average numbers N = 200
and N = 400. In other words, when the ensemble aver-
age number is large enough, the width mainly depends on
the S/N ratio, not on the ensemble average number. It is
consistent with the results shown in Fig. 2. The ensem-
ble number N = 200, shown by the solid line with black
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square, is used in the calculation in Fig. 6. The noise level
of the raw signal in estimated from the width of the phase
shift. Comparing the simulation and the phase shift shown
in Figs. 6(b) and (d), the S/N of MIR raw signal is about
0.05.

5. Wavelet Analysis of MIR Signals
5.1 Experiment in TPE-RX

The MIR diagnostic has been used for the density fluc-
tuation measurement on the large reverse field pinch (RFP)
device, TPE-RX (R = 1.72 m, a = 0.45 m) [14]. The 2D
image of the local density fluctuation has been obtained
using a 2 × 2 antenna array with a temporal resolution of
1 µs and a spatial resolution of 3.7 cm. The probe beam
with a frequency of 20 GHz in the O-mode illuminates
the plasma, so that the cutoff density is 0.5 ×1019 m−3.
The density is measured using a dual-chord interferometer.
One chord passes through the plasma center and the other
passes through the normalized radius r/a = 0.69. The den-
sity profile is obtained by fitting the experimental data with
the profile function ne(r, t) = ne(0, t)(1 − r4)(1 + C(t)r4).
Here, the profile factor C > 1 represents the hollow den-
sity, and C < 1 is the peaked density profile. In this pa-
per, we analyze a pulsed poloidal current drive (PPCD)
plasma. In this case, the normalized cutoff radius is about
0.8-0.9 m. This region is close to the reverse field surface,
and the fluctuation changes rapidly [14, 15].

5.2 Wavelet analysis
The wavelet transform of time series is its integration

with the local basis functions, i.e. wavelet functions, which
can be stretched and translated with flexible resolution in
both time and frequency.

W(s, t) =
1√

s

∫ T+∆t

T−∆t
x(t′)ψ∗

(
t′ − t

s

)
dt, (8)

where s is the scale parameter, t is the time translation
parameter, the asterisk(*) denotes the complex conjugate,
and ψ(t) is the wavelet function. We use the Morlet
wavelet function because it has a good balance between the
time and frequency localization. Furthermore, the Morlet
wavelet analysis preserves phase information that is very
important for the fluctuation analysis. The Morlet wavelet
waveform is a sinusoid with a Gaussian envelope, defined
as

ψ(s, t) =
√

s exp

⎡⎢⎢⎢⎢⎢⎣iω0

(
t′ − t

s

)
− 1

2

(
t′ − t

sd

)2⎤⎥⎥⎥⎥⎥⎦ , (9)

where ω0 is the dimensionless frequency, t′ is the dimen-
sionless time, and d is a constant related to the Gaussian
envelope. As d decreases, the time resolution improves,
whereas the frequency resolution becomes worse. As d in-
creases, the Morlet wavelet reaches the Fourier transform.
Here we take d = 1 and ω0 = 2π. The scale is the inverse
of the frequency, thus s = 1/ f [9].

The calculations of Wavelet transform can be done
as a convolution, which is considerably faster in the fre-
quency domain,

W(s, t) = F̂−1 [X(ω)Ψ (ω)] , (10)

where X and Ψ are the Fourier transforms of the time se-
ries x(t) and Morlet wavelet, respectively, and F̂−1 is the in-
verse Fourier transform. Based on the same concepts in the
previous section, the cross-wavelet spectrum, phase shift,
and wavelet coherence can be obtained [9, 13].

5.3 Wavelet analysis of MIR data in TPE-
RX

The FFT spectrum is the integrated transform within
the FFT time. It is difficult to distinguish the mode, which
changes in FFT time. If we decrease the time window, the
frequency resolution becomes worse. Wavelet analysis can
reveal the fluctuation structure at any scale in correlation
with a high-time resolution. This is advantageous to ana-
lyze the fluctuation of the RFP plasma. To further under-
stand the difference between the FFT and wavelet analy-
sis, the toroidal cross-power spectra (shot: 52973, a PPCD
plasma, cut off layer: r/a = 0.9) by FFT and wavelet trans-
forms are compared in Fig. 8. Before analyzing, a band
pass filter with a frequency range 5-50 kHz is used. The
time window of FFT is 0.25 ms and the frequency reso-
lution is 4 kHz. Therefore, it is difficult to get the mode,

Fig. 8 (a) Contour plot of the toroidal cross-power spectrum
Gxy(ω, t) (FFT time window: 0.25 ms) and MIR signal
(Shot: 52973, Cut off layer: r/a = 0.9), (b) Toroidal
cross-wavelet spectrum

∣∣∣Wa(s, t)W∗
b (s, t)

∣∣∣. The MIR sig-
nal at the top is filtered by a band pass filter (5-50 kHz).
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which changes faster than 250 µs. However, in the wavelet
spectrum, the time duration of the structure is about 100 µs.
The high-frequency mode shows a shorter duration.

Fourier transform has a fixed resolution. We cannot
distinguish the frequency, which changes within the FFT
time. The spectrum may be transverse elongated by the in-
tegration in the range of the time window. For example,
the fluctuation between 30-35 kHz from 26.4 to 26.7 ms
is changing both in frequency and amplitude, but it has
the same frequency and amplitude in FFT. Comparing the
FFT and wavelet spectra between 26.5 and 27.6 ms, the
frequency evolution between 7-10 kHz in the FFT is less
clear than that in the wavelet analysis. Therefore, wavelet
transform can give good time resolution for high-frequency
events and good frequency resolution for low-frequency
events. It is sensitive to the transient fluctuation.

Since the Morlet wavelet waveform is sinusoid with
Gaussian envelope, it may fail in tracking the very sharp
pulses. In this case, the complex Paul wavelet function can
be used [13]. On the other hand, the Morlet wavelet may
fail in tracking the high-frequency components due to the
low-frequency components. This problem can solved by
changing the time and frequency resolutions (adjusting the
parameter d in Equation (9)), or using a high-pass filter.

6. Summary
In summary, the analysis of plasma density fluctuation

on LHD and TPE-RX has been performed based on MIR
signals. The ensemble technique has been developed to re-
duce the noise effect in the spectrum analysis. By this tech-
nique, the statistical property of the fluctuation is obtained
more accurately than single data. The width of the phase
profile in the phase-frequency spectrum becomes wider as

the ratio of S/N in MIR raw signal is worse. MHD modes
are observed during high-power NBI and ECH heating.
The mode numbers are obtained by the cross-correlation
technique. The wavelet analysis shows higher time and fre-
quency resolutions, and the evolution of small structures is
observed.
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