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Instability Driven by a Finitely Thick Annular Beam in
a Dielectric-Loaded Cylindrical Waveguide
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The cherenkov and slow cyclotron instabilities driven by an axially injected electron beam in a cylindrical
waveguide are studied using a new version of the self-consistent linear theory considering three-dimensional beam
perturbations. There are three kinds of models for beam instability analysis, which are based on a cylindrical solid
beam, an infinitesimally thin annular beam, and a finitely thick annular beam. Among these models, the beam
shape properly representing the often used actual annular electron beams is the finitely thick annulus. We develop
a numerical code for a cylindrical waveguide with a finitely thick annular beam. Our theory is valid for any beam
velocity. We present eigen-modes of the cylindrical system with the plasma and beam. Instabilities driven by the
annular beam in a dielectric-loaded waveguide are also examined.
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1. Introduction
A backward wave oscillator (BWO) or a traveling

wave tube (TWT) is one of the high power microwave
sources and can be driven by an axially injected electron
beam without initial perpendicular velocity. For relatively
low powers (tens of kW or less), Pierce type thermionic
cathodes are commonly used, and the beam shape is ap-
proximated by a cylindrical solid beam [1]. In many high
power experiments, cold cathodes are used, and the shape
of the electron beam is a thin-walled annulus [2].

For a cylindrical solid beam, a new version of the
self-consistent field theory considering three-dimensional
beam perturbations was developed in Refs. [3, 4]. For an
infinitesimally thin annular beam, the boundary is modu-
lated by the transverse modulation of the annular surface.
Analyses of such beams need to be based on a different
theory from that for a solid beam. A pioneering work can
be seen in Ref. [5] using a non-relativistic linear theory
of the interaction of a sheet beam with distributed circuit
elements. The effect of the transverse beam perturbation
was considered as a change in beam coupling coefficient
to the circuit. Recently, instabilities of eigen modes in an
infinitesimally thin annular beam were analyzed [6], pre-
senting a new field theory considering the moving surface
modulation.

For finitely thick annular beam, the boundary condi-
tion at the beam surface is different from that for an in-
finitesimally thin annular beam. The boundary condition
for a finitely thick annular beam is similar to that of a solid
beam, but the number of boundaries is different. The for-
mer has an outside and an inside surface, and the latter has
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only an outside surface. In this work, we develop a nu-
merical code for a cylindrical waveguide with an annular
beam having an arbitrary thickness. Our numerical codes
are valid for any beam velocity v less than the light velocity,
and can study the eigen-modes of a waveguide with annu-
lar plasma (v = 0) and beam (v > 0), and the instabilities
driven by the annular beam.

The organization of this paper is as follows. In Sec. 2,
we describe our numerical method dealing with a finitely
thick annular beam. In Sec. 3, dispersion characteristics
of a finitely thick annular plasma are examined, by com-
paring them with cylindrical solid plasma characteristics.
In Sec. 4, the Cherenkov and slow cyclotron instabilities
driven by a finitely thick annular beam in a dielectric-
loaded waveguide are examined. A discussion and con-
clusion of this paper are given in Sec. 5.

2. Numerical Method
For slow-wave devices, the periodically corrugated

slow-wave structure (SWS) is often used [7, 8]. However,
analyses of these devices become very complex. There-
fore, we analyzed the basic electromagnetic characteristics
of a cylindrical waveguide with a straight wall in Fig. 1.
We consider a waveguide with a wall radius Rw. The
waveguide is partially loaded with a dielectric from Rd to
Rw. The relative permittivity of the dielectric is εr. The
beam has an average radius R and thickness Δp. For a
cylindrical solid beam, the beam outside radius is set to
Rb. The cylindrical coordinate system (r, θ, z) is used in
this study. A guiding magnetic field B0 is applied uni-
formly in the z-direction. An electron beam is propagating
along the guiding magnetic field. The temporal and spa-
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tial phase factor of all perturbed quantities is assumed to
be exp[i(kzz + mθ − ωt)]. Here, m is the azimuthal mode
number, and kz is the axial wave number.

In a system with magnetized plasma or a beam such
as the one shown in Fig. 2, the boundary condition at
the beam-vacuum interface should be considered prop-
erly. Electron beam surfaces are modulated as the beam
is propagating. For finitely thick annular and solid beams,
the transverse modulation appears as the surface electric
charge at the fixed boundary as shown in Figs. 2 and 3.
Considering the surface charge, we obtain four indepen-

Fig. 1 Model for analysis a thin-walled annular beam.

Fig. 2 Beam surface of a thin-walled annular beam.

Fig. 3 Beam surface of a solid beam.

dent equations at the beam-vacuum interface. They are for
the two tangential components of the electric field, axial
component of the magnetic field, and radial component
of the electric flux density. At the waveguide wall, the
electric field components tangential to the wall should be
zero. From these conditions, dispersion relations can be
obtained. For the solid beam, the derivation of dispersion
relation is provided in Refs. [3, 4]. The solid beam has
one surface. The finitely thick annular beam has another
surface inside the beam, because there is a vacuum region
inside the beam. In Appendix, we summarize the deriva-
tion of the dispersion relation using the conditions at both
beam boundaries and the waveguide wall.

3. Dispersion Curves of Plasma
We present dispersion characteristics of finitely thick

annular and solid plasmas, by assuming v = 0. The waveg-
uide radius is Rw = 1.445 cm, and the inner radius of the
dielectric is Rd = 0.85 cm. Plasma and cyclotron frequen-
cies are ωp and Ω, respectively. Figures 4-9 show the dis-
persion curves for the annular plasma with Ra = 0.75 cm
and Δp = 0.1 cm, and for the solid plasma with Rb =

0.8 cm. In this section, the plasma angular frequency is
ωp = 3× 1010 rad/s. For the analysis of the plasma, the
relative permittivity is set to εr = 1.0, which indicates that
there is no dielectric. Figures 4 and 5 show the disper-
sion curves for the annular and solid plasmas, respectively,
in the absence of a magnetic field. Axisymmetric elec-
tromagnetic modes are the transverse magnetic TM0n and
transverse electric TE0n modes. Here, n is any positive in-
teger.

Dispersion curves of the finitely thick annular plasma
show two surface waves due to the inner and outer sur-
face space charges: high- and low-frequency surface wave
modes, which are denoted as HSW and LSW, respectively.
Solid plasma has only one surface wave mode (SW) due

Fig. 4 Dispersion curves of thin-walled annular plasma in the
absence of magnetic field.
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Fig. 5 Dispersion curves of solid plasma in the absence of mag-
netic field.

Fig. 6 Dispersion curves of thin-walled annular plasma with
B0 = 0.1 T.

to the outer surface space charge. The LSW is due to the
outer surface of the annulus and corresponds to the SW of
solid plasma. The frequency is zero at kz = 0, increases
with increasing kz, and approaches an asymptotic limit as
kz → ∞. This limit is ωp/

√
2. The HSW mode is at-

tributed to the inner boundary of the annular plasma. Its
frequency is ωp at kz = 0, decreases with increasing kz,
and approaches an asymptotic limit as kz → ∞. This limit
is also ωp/

√
2.

The dispersion curves for the annular and solid plas-
mas are shown in Figs. 6 and 7, respectively, at B0 = 0.1 T
(ωp > Ω) and in Figs. 8 and 9, respectively, at B0 = 0.2 T
(Ω > ωp). With finite strength magnetic fields, electro-
magnetic modes become a hybrid of TM and TE modes,
even in axisymmetric cases. EH and HE are often used to
designate the hybrid mode. In this study, TM is dominant
in the EH mode, and TE is dominant in the HE mode. In

Fig. 7 Dispersion curves of solid plasma with B0 = 0.1 T.

Fig. 8 Dispersion curves of thin-walled annular plasma with
B0 = 0.2 T.

Fig. 9 Dispersion curves of solid plasma with B0 = 0.2 T.
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Figs. 6 and 7, axisymmetric EH0n and HE0n modes can be
seen.

Cyclotron modes, denoted as C in Figs. 6-9, appear
in addition to the space charge modes. For both finitely
thick annular and solid plasmas, the frequencies of cy-
clotron mode are between the upper hybrid frequencyωh =

(Ω2 + ω2
p)1/2 and Ω or ωp, whichever is larger.

As for the space charge modes, surface wave modes
like the B0 = 0 case exist if Ω < ωp. With increasing kz,
the frequencies of LSW as well as SW increase from zero
and approach an asymptotic limit as kz → ∞. This limit is
not ωp/

√
2 but ωh/

√
2. The frequency of HSW decreases

with increasing kz, and has the same asymptotic value as
the low-frequency mode in the limit of kz → ∞.

The presence of a magnetic field lead to the well-
known plasma modes due to the volume space charge per-
turbation [4]; the low-frequency plasma mode (LP) of the
annular plasma and plasma mode (P) of the solid plasma in
Figs. 6-9. They have frequencies that are zero at kz = 0, in-
crease with increasing kz, and approach an asymptotic limit
as kz → ∞. This limit is ωp or Ω, whichever is smaller.

High-frequency plasma mode (HP) in Fig. 8 is in the
frequency range of ωh > ω > Ω and approaches Ω as
kz → ∞. In terms of the frequency region, it can be
said that this mode is a kind of cyclotron mode. How-
ever, it is still affected by the inner surface of the annular
plasma. When Ω is not sufficiently larger than ωp as in
Fig. 8, it has qualitatively the same field properties as the
high-frequency surface wave mode in Fig. 6 and is pushed
down farther than the other cyclotron modes. By increas-
ing the magnetic field further, the inner surface effect be-
comes negligible.

For the finitely thick annular plasma, the cyclotron
modes stay closer to the line ω = ωh, and plasma modes
are pushed down closer to the line ω = 0 than the solid
plasma case. This may be caused by the difference in the
geometrical factor. The solid plasma occupies a larger
portion of the cylindrical cross section than the annular
plasma. At the same ωp, the plasma effects on the eigen-
modes of the waveguide are more remarkable for the solid
shape than for the annular shape.

For the dielectric-loaded waveguides, eigenmodes are
very complicated in themselves. They become more com-
plicated due to the inner boundary of the annulus. We sum-
marize eigenmodes due to the surface and volume space
charges in Tables 1 and 2.

For HSW, the signs of surface charges on the inner and
outer surfaces are opposite, just as in Fig. 2. The plasma
sheet behaves as a electric double layer. On the other hand,
the transverse displacements of the inner and outer surfaces
are opposite for LSW. The surface charges are of the same
sign, and the plasma sheet becomes a charge layer. In the
solid plasma case, the surface charge is a charge layer at
r = Rb, as can be seen from Fig. 3.

Cyclotron modes are relatively simple and are denoted
as C in Figs. 6-9. WhenΩ is not sufficiently larger than ωp,

Table 1 Space charge mode of a finitely thick annular plasma.

ωp > Ω Ω > ωp

Surface wave mode due to
the outer surface (lower
frequency region)

LSW —

Surface wave mode due to
the inner surface (higher
frequency region)

HSW —

Volume space charge mode LP

Table 2 Space charge mode of a solid plasma.

ωp > Ω Ω > ωp

Surface wave mode due to
the outer surface SW —

Volume space charge mode P

the lowest branch of C is affected by the inner surface of
the annulus, HP in Fig. 8.

4. Instabilities Driven by the Finitely
Thick Annular Beam
In this section, we examine instabilities driven by

beam (v > 0). The waveguide radius is Rw = 1.445 cm,
and the inner radius of dielectric is Rd = 0.85 cm. In this
section, the relative permittivity of the dielectric is set to
εr = 4.0, in order to reduce the phase velocity of the elec-
tromagnetic wave to beam velocity. Figure 10 shows the
dispersion curves for a finitely thick annular beam with en-
ergy 660 keV and beam current 2.3 kA, in the absence of a
magnetic field.

For an unmagnetized finitely thick annular electron
beam, there are two kinds of surface space charge modes
as in the annular plasma case at v = 0. One of them
is due to the inner beam surface and denoted as “high-
frequency space charge mode.” The other mode is at-
tributed to the outer beam surface and denoted as “low-
frequency space charge mode.” Both have fast and slow
wave branches. In Figs. 10 and 11, FHCh and SHCh are
the fast and slow high-frequency space charge modes, and
FLCh and SLCh are the fast and slow low-frequency space
charge modes, respectively. FLCh and SLCh exist near the
lines ω = kzv + ωp/(γ

√
2) and ω = kzv − ωp/(γ

√
2), re-

spectively. The slow modes couple TM01 mode, result-
ing in the Cherenkov instability. The instability of SLCh

(Cherenkov instability 1) is much stronger than that of
SHCh (Cherenkov instability 2).

Similar to the plasma cases described in the previous
section, the beam behaves like a moving charge layer for
Cherenkov instability 1 in Fig. 10. FLCh and SLCh merge
into a complex conjugate solution in strong interaction re-
gions, similar to the solid beam case. On the other hand,
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Fig. 10 Dispersion curves of a thin-walled annular beam in a
dielectric-loaded waveguide with B0 = 0 T.

Fig. 11 Dispersion curves of a thin-walled annular beam in a
dielectric-loaded waveguide with B0 = 0.8 T.

FHCh and SHCh do not become complex conjugates. This
might be caused by a double-layer-like behavior of the
beam. As seen from Fig. 2, the axial electric fields are
in the opposite direction on both the sides of the annu-
lus. The Cherenkov interactions due to both the surface
charges may compete with each other. Hence, overall the
Cherenkov instability (Cherenkov instability 2) becomes
weaker than Cherenkov instability 1.

Figure 11 shows the dispersion curves for a finitely
thick annular electron beam with B0 = 0.8 T (Ω > ωp). In
this case, there is little effect of the high-frequency space
charge mode due to the inner wall. For such a magnetized
electron beam, the predominant beam modes are the fast
and slow space charge modes due to the volume perturba-
tions, which form a complex conjugate mode SCh in the
interaction region. Further, the fast (Fcy) and slow (Scy)
cyclotron modes exist near the lines ω = kzv + Ω/γ and
ω = kzv−Ω/γ, respectively. The slow space charge and cy-
clotron modes couple with both the EH01 and HE01 modes,
resulting in the Cherenkov and slow cyclotron instabilities.
Instabilities for the EH01 mode are superior to those for the
HE01 mode.

5. Discussion and Conclusion
Up to now, the thickness of the annulus is maintained

at a constant value of Δp = 0.1 cm, as mentioned in Sec. 2.
Here, we discuss numerically obtained results based on a
solid beam, an infinitesimally thin annular beam, and a
finitely thick annular beam. In Fig. 12, Δp is varied, and the
dependence of the temporal growth rate on Δp is examined.
The beam outer radius is fixed at 0.8 cm, and beam inner
radius is varied with a fixed line charge density, i.e., keep-
ing ωpΔp constant. In the limit that the beam inner radius is
zero, the growth rate of the Cherenkov and slow cyclotron
instabilities of the finitely thick annular beam approaches
the growth rate of the solid beam, � in Fig. 12.

The growth rate of the Cherenkov instability increases
with decreasing Δp. The growth rate of the slow cyclotron
instability also increases with decreasing beam thickness
and decreases near Δp = 0. In the extreme case of Δp → 0,
the corresponding beam is an infinitesimally thin annular
beam. However, in the theoretical model, the finitely thick
and infinitesimally thin annuluses have different structures:
the former has an internal structure between the inner and
outer surfaces, and the latter is just a sheet without any
internal structure.

Based on an infinitesimally thin annular beam, the
Cherenkov and slow cyclotron instabilities can be analyzed
following the new field theory considering the moving sur-
face modulation. The growth rates obtained by the in-
finitesimally thin annular beam model are depicted by •
in Fig. 12.

For the a finitely thick annular beam in the present
work, ωp → ∞ and ωh → ∞ when Δp → 0 with a fixed
ωpΔp. As mentioned in Sec. 3, the cyclotron modes stay
close to the line ω = ωh, and plasma modes exist near
the line ω = 0 in the plasma case. Hence, the cyclotron
modes are affected by the fact that ωh → ∞. Further, the
Doppler shifted cyclotron modes of the beam are near the
line of ω = kzv ± ωh/γ, not the line of ω = kzv ± Ω/γ. On
the other hand, in the infinitesimally thin model, the diver-
gence of ωp is removed using the finite ωpΔp in the limit
of ωp → ∞ and Δp → 0. The slow cyclotron interaction
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Fig. 12 The dependence of the temporal growth rate on the beam
thickness.

occurs near the crossing point between ω = kzv − Ω/γ and
the waveguide mode. This difference causes a disagree-
ment between the finitely thick and infinitesimally thin an-
nular models for slow cyclotron instabilities in the limit of
Δp → 0. For the Cherenkov interaction, such disagreement
does not occur. Since the plasma modes are pushed down
closer to the line ω = 0, the Doppler shifted space charge
modes of the beam are close to the line ω = kzv even when
ωp → ∞. The Cherenkov interaction is not affected much
by the divergence of ωp attributed to the finitely thick an-
nular model.

In conclusion, we developed a numerical code for a
cylindrical waveguide with a finitely thick annular beam
considering three-dimensional beam perturbations. The
transverse perturbations of electrons appear as the sur-
face electric charge at the fixed boundary and become
important, especially for a weak guiding magnetic field
(ωp > Ω). The surface wave modes exist in addition to the
volume wave mode. A solid beam has only one surface,
while a finitely thick annular beam has another surface in-
side the beam. The dispersion curves show two surface
waves due to the two surfaces: high- and low-frequency
surface wave modes. A solid plasma has only one sur-
face wave mode due to the outer surface space charge.
For a relatively strong magnetic field (Ω > ωp), surface
modes become insignificant. A finitely thick annular beam
drives the slow cyclotron and Cherenkov instability. The
Cherenkov and slow cyclotron instabilities increase with
decreasing Δp, for a fixed ωpΔp. In the limit of Δp → 0, ωp

and ωh diverge in the finitely thick model. The divergence
affects the slow cyclotron instability. However, Δp and ωp

are finite in real devices. Hence, the finitely thick annular
model is more realistic and important compared with the
other beam models.
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Appendix: Dispersion Equation of a
Finitely Thick Annular Beam

We consider the dielectric SWS system depicted in
Fig. 1. Suitable functions for the cylindrical system are
the Bessel functions, i.e., Jm and Nm. In the inner vac-
uum region of the annular column, r < Ra −Δp/2, the axial
components of the electric and magnetic waves are

Eva
1z = A+Jm (k⊥r) and Bva

1z =
i
c

A−Jm (k⊥r) .

(A. 1)

Here, k⊥ is the vertical wave number in vacuum,

k2
⊥ =
ω2

c2 − k2
z . (A. 2)

In the beam column region, Ra −Δp/2 < r < Ra +Δp/2, the
vertical wave number k± is derived in Ref. [3] and given by

k2
± =
−a2 ±

√
a2

2 − 4a4a0

2a4
. (A. 3)

Here,

a4 = ω
′′2 − ω

2
p

γ3 ,

a2 = −
⎡⎢⎢⎢⎢⎢⎣
(
ω2

c2 − k2
z

) ⎛⎜⎜⎜⎜⎜⎝ω′′2 − ω
2
p

γ3

⎞⎟⎟⎟⎟⎟⎠ − ω
2
p

γc2

⎛⎜⎜⎜⎜⎜⎝ω′2 − ω
2
p

γ3

⎞⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎦

−
⎡⎢⎢⎢⎢⎢⎣
(
ω2

c2 − k2
z

)
ω′′2 − ω

2
p

γc2ω
′2
⎤⎥⎥⎥⎥⎥⎦
⎛⎜⎜⎜⎜⎜⎝1 − ω2

p

γ3ω′2

⎞⎟⎟⎟⎟⎟⎠ ,

a0 = Δω
′′2

⎛⎜⎜⎜⎜⎜⎝1 − ω2
p

γ3ω′2

⎞⎟⎟⎟⎟⎟⎠ ,

Δ =

⎛⎜⎜⎜⎜⎜⎝ω
2

c2 − k2
z −
ω2

p

γc2

ω′2

ω′′2

⎞⎟⎟⎟⎟⎟⎠
2

−
⎛⎜⎜⎜⎜⎜⎝ ω

2
p

γc2

ω′

ω′′2
Ω

γ

⎞⎟⎟⎟⎟⎟⎠
2

,

(A. 4)

and

ω′ = ω − kzv,

ω′′2 = (ω − kzv)2 − (Ω/γ)2 . (A. 5)

Independent modes of the magnetized beam are those with
k+ and k− corresponding to the + and − signs in Eq. (A. 3),
respectively. The axial components are given by

Eb
1z = D+mJm(k+r) + E+mNm(k+r)

+ D−mJm(k−r) + E−mNm(k−r),

Bb
1z =

i
c
[
F+mJm(k+r) +G+mNm(k+r)

]

+
i
c
[
F−mJm(k−r) +G−mNm(k−r)

]
. (A. 6)
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In the outer vacuum region of the annular column, Ra +

Δp/2 < r < Rd, the axial components become

Eva
1z = Dva

m Jm (k⊥r) + Eva
m Nm (k⊥r) ,

Bva
1z =

i
c
[
Fva

m Jm (k⊥r) +Gva
m Nm (k⊥r)

]
, (A. 7)

and in the dielectric region, Rd < r < RW,

Ed
1z = Dd

mJm (x⊥r) + Ed
mNm (x⊥r) ,

Bd
1z =

i
c

[
Fd

mJm (x⊥r) +Gd
mNm (x⊥r)

]
. (A. 8)

Here, x⊥ is the vertical wave number in the dielectric with
the dielectric constant εr.

x2
⊥ = εr

ω2

c2 − k2
z . (A. 9)

Transverse field components can be derived from the axial
components in all regions.

For a bounded system, Maxwell’s equations should be
solved subject to the appropriate boundary conditions. At
the beam surface (r = Ra + Δp/2 or r = Ra − Δp/2), the
following four independent equations are obtained in ac-
cordance with the methods presented in Refs. [3, 4].

Eb
1z = Eva

1z , (A. 10)

Eb
1θ = Ein

1θ. (A. 11)

Bb
1z = Bva

1z, (A. 12)

Eb
1r +
σ1

ε0
= Eva

1r . (A. 13)

Here, σ1 is the surface charge density at the beam surface.
Superscripts “va” and “b” indicate the vacuum and beam
sides on the surface, respectively.

At the outer boundary r = Ra + Δp/2 (= R2), the four
equations (A. 10)-(A. 13) correlate beam fields of (A. 6)
with vacuum fields of (A. 7). Representing field compo-
nents by D+m, E+m, D−m, and E−m in the beam and Dva

m , Eva
m ,

Fva
m , and Gva

m in the vacuum region, the four equations are
expressed as the following formula.

[MC]R2 ·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Dva
m

Eva
m

Fva
m

Gva
m

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= [MA]R2 ·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D+m
E+m
D−m
E−m

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (A. 14)

Here, [MA]R2 and [MC]R2 are the 4× 4 matrix composed
of the coefficients of (D+m, E+m, D−m, E−m) and (Dva

m , Eva
m , Fva

m ,
Gva

m ), respectively. Similarly, at the inner boundary r =
Ra − Δp/2 (= R1)

[MA]R1 ·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D+m
E+m
D−m
E−m

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= [MC]R1 ·

[
A+
A−

]
. (A. 15)

Here, [MA]R1 is the 4× 4 matrix composed of the coeffi-
cients of (D+m, E+m, D−m, E−m), and [MC]R1 is the 4× 2 matrix
composed of the coefficients of (A+, A−).

From eqs. (A. 14) and (A. 15), we can derive the rela-
tionship between (Dva

m , Eva
m , Fva

m , Gva
m ) and (A+, A−).⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Dva
m

Eva
m

Fva
m

Gva
m

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= [MC]−1

R2 · [MA]R2 · [MA]−1
R1 · [MC]R1 ·

[
A+
A−

]

= [X] ·
[

A+
A−

]
. (A. 16)

Here, [X] = [MC]−1
R2 · [MA]R2 · [MA]−1

R1 · [MC]R1. Similarly,
for the dielectric-vacuum boundary at r = Rd, we express
the condition using the 4× 4 matrix [MD].

[MD]Rd ·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Dd
m

Ed
m

Fd
m

Gd
m

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= [MC]Rd ·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Dva
m

Eva
m

Fva
m

Gva
m

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (A. 17)

Finally, using (A. 16) and (A. 17), we can derive the rela-
tionship between (Dd

m, Ed
m, Fd

m, Gd
m) and (A+, A−) as⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Dd
m

Ed
m

Fd
m

Gd
m

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= [MD]−1

Rd
· [MC]Rd · [X] ·

[
A+
A−

]

= [Y] ·
[

A+
A−

]
. (A. 18)

Here, [Y] = [MD]−1
Rd
·[MC]Rd ·[X]. This equation correlates

electromagnetic fields in the dielectric region with those in
the vacuum region inside the beam.

At the wall of r = Rw, two electric field components
tangential to the wall, E1z and E1θ, should be zero.

Ed
1z

∣∣∣ RW = Dd
mJm (x⊥RW) + Ed

mNm (x⊥RW) = 0.

(A. 19)

Ed
1θ =

ω/c
x

[
Fd

mJ′m (x⊥r) + Ed
mN′m (x⊥r)

]
= 0.

(A. 20)

Expressing Dd
m, Ed

m, Fd
m, and Gd

m by A+ and A− using
(A. 18), eqs. (A. 19) and (A. 20) take the following form:[

pz+ pz−
pθ+ pθ−

]
·
[

A+
A−

]
= 0. (A. 21)

Then, the dispersion equation given by

pz+ · pz− − pθ+ · pθ− = 0. (A. 22)
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