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We estimate the electron angular velocity shear ∂rωθo, which can be formed by plasma heating near the low-
order rational surface with a poloidal chain of magnetic islands. We suppose that the plasma is heated sufficiently
that its electrons start to miss the magnetic islands during their radial collisional shift and movement along the
toroidal surface. This provides an ion volume charge in some regions of magnetic islands, which leads to shear
formation. The time taken for shear formation is short. The conditions for magnetic island width leading to
the shear are derived. It is shown that even narrow magnetic islands can lead to the shear. The shear can damp
instabilities with a growth rate smaller than the ion cyclotron frequency. The spatial structures of convective
vortical cells are described. We derive inverse dependences of the radial width of excited vortices on ∂rωθo
and radial gradient of plasma density ∂rn0e. Amplitude of electron radial oscillations is smaller for larger ∂rωθo
and ∂rn0e. These dependences promote a steep radial distribution of the plasma density and internal transport
barrier.
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1. Introduction
Internal transport barrier (ITB) formation is being in-

vestigated widely [1–3]. Previously, the effect causing
the shear of the electron angle velocity (∂rωθo) to damp
anomalous transport, thereby destroying coherent ordered
motion due to the relative shift of layers, was investigated.
ITB is formed for a shear above the threshold. We con-
sider one more effect of anomalous transport suppression
in plasma located in perpendicular magnetic ( �H0) and elec-
tric ( �E0r) fields. The shape of vortices is described. The
nonlinear vector equation connecting the electron vorticity
and density is derived. We derive inverse dependences of
the radial width of excited vortices on the shear ∂rωθo in
perpendicular fields and the degree of steepness of the ra-
dial plasma density distribution, ∂rn0e. These dependences
promote a steep radial distribution of the plasma density
and ITB formation. The amplitude of the vortex satura-
tion is inversely proportional to the shear. They also pro-
mote ITB formation, suppressing the transport, especially
in the case of a small magnetic shear. It is determined that
a small magnetic shear leads to a large spatial interval (∆)
between rational surfaces [4]. If radial correlation length of
excited perturbations becomes less than ∆, the radial trans-
port could be suppressed. A convective diffusion equation
describing the transport of plasma particles in the field of
a lattice of overlapped vortices is derived.

Currently, the formation [5, 6] and role [4, 7–9] of
magnetic islands in nuclear fusion plasma are being inves-
tigated intensively. In particular, their effect on ITB forma-
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tion is very important. In experiments [4] involving suffi-
cient plasma heating, the plasma confinement was better in
the presence of a poloidal chain of magnetic islands than
in their absence. In some experiments [7,8], the shear was
formed by a poloidal chain of magnetic islands with suffi-
cient plasma heating. This study shows that the electrons
start to miss magnetic islands because of sufficient plasma
electron heating near the rational surface with the poloidal
chain of magnetic islands, and the shear is formed. The
time of shear formation is derived and shown to be short.

The magnetic island width conditions lead to shear
formation are derived. The magnetic island width condi-
tions that do not lead to anomalous transport of trapped
particles are known; the island should be narrow. It is
shown here that even narrow islands can lead to shear. One
can note that several poloidal chains of islands, observed
in [7], are better for shear formation on longer radial inter-
val.

It is shown that this formed shear can damp instabil-
ities with a growth rate γ, which is smaller than the ion
cyclotron frequency γ < ωci.

There are some effects connected with the shear.
For strong anomalous transport determined by a streamer
formed by a single wide vortex overlapping all inhomo-
geneous area, the shear destroys vortices. In this case,
some anomalous transport remains after ITB formation.
For weak anomalous transport determined by a lattice of
vortices, the shear can spatially (radially) separate the vor-
tices.

c© 2008 The Japan Society of Plasma
Science and Nuclear Fusion Research
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2. Spatial Structure of Vortical Con-
vective Cells
Let us describe a chain on azimuth θ of the vortices

in the plasma, located in perpendicular magnetic �H0 and
radial electric �Er0 fields in the cylindrical approximation.
Neglecting nonstationary and nonlinear electric potential φ
of members at the vortices, from electron equation of mo-
tion, one can obtain the following equation describing the
oscillatory dynamics of electrons in the field of the pertur-
bation, at small (δr ≡ r−rv) deviations from radial position
of vortices rv:

(δr)2 + 4(eφ − δpe/ne(rv))/rvmeωce(rv)∂rωθo
∣∣∣r=rv

= C, (1)

ωθo ≡ Vθo(r)/r,

�Vθ0 = −e[�ez, �Ero]/meωce − [�ez, �∇p0e]/nemeωce.

Here, r is the radial position of an electron; δpe is the elec-
tron pressure perturbation; ne is the electron density; e and
me are the electron charge and mass; ωce is the electron
cyclotron frequency; �Ero is the unperturbed radial electric
field; p0e is the unperturbed electron pressure; and �Vθ0 is
the unperturbed electron drift velocity at azimuth θ. Eq. (1)
describes the radial electron oscillations δr ≡ r−rv through
dependences of φ(θ, r) and electron density perturbations
δne(θ, r) on θ and r. Let us connect eφ− δpe/ne(rv) with a
characteristic of electron vortical movement α ≡ �ez ·�∇×�Ve.
Here, �ez is the unit longitudinal vector and �Ve is the elec-
tron velocity. From the electron equation of motion, we
derive

α/Vthiρci = e∆φ/Te − ∆ne/ne. (2)

Here, ρci is the ion cyclotron radius, Vthi is the ion ther-
mal velocity, and Te is the electron temperature. For a
vortex with the dimension ρci, we have α < ωci and
eφ/Te − δne/ne ≈ α/ωci. One can see that the amplitude of
the radial oscillations of electrons for the given amplitudes
of the electric potential and density perturbation is smaller
for a larger shear ∂rωθo. The larger shear helps the ITB
formation.

In perpendicular magnetic and radial electric fields,
the vortices can have a phase velocity Vph ≈ Vθ0, as well
as slow vortices with Vph << Vθ0, e.g., Rossby vortices.
Let us derive the spatial structure of a slow vortex. For
this purpose, one can derive a vector equation describing
vortical electron dynamics, which is similar to the general
nonlinear equation [10]:

dt

(
�α − �ωce

ne

)
=

1
ne

((�α − �ωce)�∇)�V . (3)

Here, �α = [�∇ × �V] and dt ≡ ∂t + (�V�∇). From eq. (3) one
can obtain an equation describing a vortex with a small
amplitude. Hence, we derive the following equation for

the perturbation of electron trajectory δr in the field of the
vortex

δr(θ, r) = − 1
ωceo∂r(noe/ωce)

δne(θ, r). (4)

From here, one can see that at the same amplitude of
plasma density perturbation δne, the vortex is narrower in
the radial direction for larger ∂r(noe/ωce), i.e., for a steeper
radial distribution of the plasma density. The latter helps
a steeper radial distribution of the plasma density and ITB
formation.

The vortex is excited up to its maximum amplitude, at
which the layers trapped by it during the excitation time
γ−1 are shifted relative to each other due to the shear with
an angle ≤ 2π/�θ, i.e., δrv(�θ/2π)∂rωθ0

∣∣∣r=rv ≤ γ. Here, �θ
is the azimuthal wave number of excited vortices. From
this expression, we derive

|eφo− δpe0/ne(rv)|= (γπ/�θ)2rvmeωce/2
∣∣∣∂rωθo

∣∣∣r=rv .

(5)

Here, φ0 and δpe are the saturation amplitudes of elec-
tric potential and electron pressure perturbation in the vor-
tex, respectively. The amplitude of vortex saturation is in-
versely proportional to ∂rωθ0. The decrease in the level of
fluctuations upon ITB formation has been observed in [3],
which promotes ITB formation.

3. Convective Diffusion Equation
Let us consider the finite amplitudes of excited vor-

tices, when the frequency Ωr of the electron oscillations
forming the vortex becomes greater than the growth rate γ
of the vortex excitation, i.e., Ωr > γ. Then in vicinity of
vortex borders, the radial distribution of electron density
ne(r) jumps. On these ne jumps, new cells with the largest
growth rates are excited. This causes an ordering of con-
vective cells. Therefore, after achieving large amplitudes,
an instability is developed in the ordering of cells. Similar
instability has been investigated in [11]. Inside the borders
of the vortex, an ordered convective movement of the elec-
trons occurs. However, it is influenced by background fluc-
tuations and vortex fields. Further, it is important that the
amplitudes of vortexes are not stationary. Instead of an av-
erage radial distribution of electron density noe(t, r), which
does not consider correlations, we use four electron densi-
ties nke(t, r) averaged for small-scale oscillations: n1e(t, r)
and n2e(t, r) are the average electron densities in region 1 in
the middle of a cell for r > rv and in region 2 in the middle
of a cell for r < rv, (see Fig. 1); n3e(t, r) and n4e(t, r) are
the electron average densities in region 3 near the border
of a cell for r > rv and in region 4 near border of a cell for
r < rv. The importance of using different nke(t, r) is also
determined; the angular speeds of electron rotation inside a
cell vary with distance from its axis. In addition, in central
area of the convective cell, the following processes are still
realized: 1) ne(r) plateau is formed due to the difference
in angular speeds of electron rotations; and 2) ne(r) jump
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Fig. 1 Single convective cell. r is the radius and ϕ is the poloidal
angle.

formation at certain times in regions 1 and 2 causes accel-
erated diffusion and exchange of electrons between regions
1 and 3 (factor α), and between regions 2 and 4. α is the
factor of mixing that depends on the fluctuations, growth
of amplitudes, and differences in characteristic times of the
electrons.

But after ordering, adjacent cells form an integrated
border. The particles in the space between individual
cell borders and the integrated border move in the ra-
dial direction from cell to cell, with a distance min{�cor,
δrvτcorΩr/π}. �cor and τcor are the correlation length and
time of vortical convective cell turbulence, respectively.

From the above, we have approximately

n1(t + τ, r) = (1 − α)n2(t, r) + αβn3(t, r),

n2(t + τ, r) = (1 − α)n1(t, r) + αβn4(t, r). (6)

n3(t + τ, r) = αn1(t, r) + β(1 − α)n3(t, r − δrv)
+0.5(1 − β)[n3 + n4],

n4(t + τ, r) = αn2(t, r) + β(1 − α)n4(t, r + δrv)
+0.5(1 − β)[n3 + n4],

β is the factor of the convective exchange of particles of
cells. The value of β is determined by the ratio of the area
with convective electron dynamics, located between indi-
vidual cell borders and the integrated border to the entire
area, located between individual cell borders and the in-
tegrated borders of adjacent cells. From these equations,
using n̄ = (n3 + n4)/2, δn = n3 − n4, N̄ = (n1 + n2)/2, and
δN = n1 − n2, we derive

τ∂t n̄ = α(N̄ − βn̄) − (β/2)(1 − α)δrv∂rδn

τ∂tδn+[1−β(1−α)]δn = αδN−2β(1−α)δrv∂rn̄, (7)

τ∂t N̄ = α(βn̄ − N̄), τ∂tδN + (2 − α)δN = αβδn.

One can see that n̄ is similar to the average noe(t, r) but
includes correlations. From these equations, we have, sim-
ilar to [11], the following convective diffusion equation

τ2∂2
t δn + τ∂t[(1 − β(1 − α))δn − αδN]

= −2β(1 − α)δrv∂r

×
[
α(N̄ − βn̄) − β

2
(1 − α)δrv∂rδn

]
. (8)

As β is proportional to (δrv − ∆)/δrv, at δrv < ∆, we have
β = 0, and there is no convective radial transport because
the convective cell exchange of particles disappears.

4. Shear Formation by Magnetic Is-
lands
Let us consider the shear formation near a poloidal

chain of narrow magnetic islands. The electric field Er0 is
approximately zero on the axis of a plasma column r = 0.
It is maximum inside the plasma column at r = rm. We
suppose that on some radial interval r0 − rf < r < r0 +∆r+
rf of width 2rf around the chain of magnetic islands, the
electric field Er0 in the absence of shear is proportional to
r at rf < (rm − ∆r)/2. The magnetic islands have a radial
width ∆r. The chain of islands is located at r = r0 + ∆r/2,
where r0 is the lower border of the islands. Then on this
interval, one can present

Er0 = −2πeN0r, r0 − rf < r < r0 + ∆r + rf ,

and N0 ≡ n0e − n0i. (9)

Here, n0e and n0i are the unperturbed plasma electron and
ion densities, respectively. This suggests that there is no
shear, i.e., ωθ0 � ωθ0(r). We include the effect of os-
cillations on electron transport using an effective collision
frequency νef in the diffusion coefficient D⊥ ∝ (νe + νef),
where νe is the electron collision frequency.

On the plasma cross-section 0 < r < a, several chains
of magnetic islands can exist [7]. However, we consider
the influence of a poloidal chain of islands on shear for-
mation for a simple case. We consider a low-order rational
magnetic surface, because the condition of shear formation
is satisfied easily for this surface for sufficient plasma elec-
tron heating. According to [4], we consider local plasma
heating near this surface. This local heating leads to an
important effect: the quick longitudinal electron dynamics
necessary for shear formation is obtained near this low-
order rational magnetic surface.

If the plasma is heated sufficiently, its electrons start to
miss the island during their radial collisional shift. This is
caused by the quicker movement of heated electrons along
the toroidal surface. Some of the electrons located in the
island escape upon reaching Er to zero inside island, except
for the layer of width

δrsep ≈ 2πnR
√

D⊥/D‖ (10)

≈ (nρce/q)
√

(νe + νef⊥)/(νe + νef‖ )

near r = r0. D⊥ and D‖ are the transversal and lon-
gitudinal diffusion coefficients respectively, νef⊥ and νef‖
are the transversal and longitudinal effective collision fre-
quencies respectively, and q is the number of electron rota-
tions around the torus during the time of free path motion.
When some of the electrons escape the magnetic island,
the plasma ion volume charge ni is not compensated by the
electron charge in the island; the difference in charges is
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Fig. 2 Cross-section of magnetic islands. 1 and 2 are the 1st
(lower) and 2nd (external) borders of the magnetic is-
lands. Shaped arrow specifies radial collisional shift of
electrons through the magnetic islands. Continuous ar-
rows demonstrate directions of electron movements along
the magnetic field lines.

δn. δn can be determined from experiments; it is estab-
lished that Er0 ≈ 0 in the island.

With sufficient plasma heating, the electron transport
through magnetic islands changes from slow collisional to
quick. Electrons miss the magnetic islands. Although the
radial size of the magnetic islands is small, the quick elec-
tron transport leads to the appearance of uncompensated
ion volume charge in the magnetic islands and in the shear
∂rωθo.

It is necessary to note that the longitudinal inhomo-
geneity of the magnetic field results in longitudinal re-
distribution of charges upon shear formation. The conse-
quences of this redistribution of charges will be considered
in another paper.

For the uncompensated ion volume charge to appear in
a magnetic island, it is necessary that its width ∆r should
be larger than the electron cyclotron radius, i.e., ∆r > ρce.

Let us consider the radial electron dynamics in a small
neighborhood of the chain of islands. The electrons move
in the radial direction in perpendicular �E × �H fields with
velocity V0r = −(eEor + ∂r p0e/ne)(νef + νe)/meω

2
ce and dif-

fusion coefficient D⊥. When an electron reaches an island
with small r, it propagates slow collisionally through island
in the absence of shear. But in the case when shear can be
formed, the electron quickly reaches the second (external)
boundary of the island, in time 2πR/V (hot)

the . Here, V (hot)
the is

the thermal velocity of heated electrons near a magnetic
island. After this, the electron again propagates slowly in
the direction of large r.

Thus with sufficient plasma heating near the island, a
shear is formed. Using approximation of a poloidal chain
of narrow magnetic islands as an azimuthal symmetrical
narrow layer, we have the following equation for the radial
distribution of electric field

Er0 ≈ −2πe



Nar, 0 ≤ r ≤ r0

Nar2
0/r − δn(r − r2

0/r),
r0 ≤ r ≤ r0 + δrsep

0, r ≥ r0 + δrsep

(11)

If the field is small, Er0 ≈ 0, at r = r0 + δrsep, we have
Na ≈ 2δnδrsep/r0. One can see that the density of the un-
compensated ion volume charge is relatively, large in the
island with r0 
 ∆r, if Er ≈ 0 at r = r0 + δrsep.

One can use the estimation Na ≈ 4n0(e∆ϕ/Ti)(rdi/L)2.
L is the width of the region with Er � 0 and ∆ϕ is the
potential for L. One can conclude that the island can be
sufficiently narrow for shear formation if

(e∆ϕ/Ti)(r2
di/Lδrsep) < 1. (12)

This inequality suggests that in a real island, the small un-
compensated ion volume charge, δn << n0, is sufficient for
shear formation.

Let us calculate the shear of the electric field and nor-
malize it for the electric field Er = −2πeN0r in the absence
of shear: S ≡ (Er |no TB )−1r2∂r(Er/r). If Er

∣∣∣r=r0+δrsep ≈ 0,
we have

S =


(Na/N0)(r2

0/r
2)(2 + r0/δrsep),

r0 ≤ r ≤ r0 + δrsep

0, r ≥ r0 + δrsep

. (13)

The shear is large for a region of narrow magnetic islands
r0 >> ∆r > δrsep,

S ≈ (Na/N0)(r0/δrsep), r0 ≤ r ≤ r0 + δrsep.

|S | >> 1 (14)

Let us consider the shear of ωθ0 = Vθ0/r.

Vθ0 = (meωHe)−1(−eEr0 − ∂r p0e/n0e). (15)

For ITB formation, this shear ∂rωθ0 is more important. We
determine the angular velocity shear

S ω ≡ (ωθ0 |no TB )−1r∂rωθ0,

ωθ0 |no TB = (ω2
pe/ωHe)(N0/2n0).

Then we derive

S ω = −


(Na/N0)(r2
0/r

2)(2 + r0/δrsep),
r0 ≤ r ≤ r0 + δrsep

0, r ≥ r0 + δrsep

.

Absolute value of the relative angular velocity shear is of
the order of S ω = −(Na/N0)r0/δrsep. But the absolute
shear can be increased. In several experiments, strong
localization of the region with V0θ � 0 has been ob-
served. Since the radial width of area V0θ � 0 localization
∆rsh = 1 has been observed experimenally (∆rsh = 1 cm),
the shear (∂rV0θ)apr can be increased in existing nuclear
fusion installations in comparison with the smooth case
(∂rV0θ)smooth ≈ V0θ/a strongly (∂rV0θ)apr ≈ V0θ/∆rsh ≈
(∂rV0θ)smootha/∆rsh, where a is the poloidal radius.
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The shear is formed during

τT B ≈ (νef + νe)−1(ω2
ce/2ω

2
pe)(r0/∆r). (16)

The time is short for magnetic islands, which are not very
narrow.

Although narrow islands provide fast electron trans-
port through the island dimension ∆r, they strongly sup-
press transport in their neighborhood. Actually in an ex-
periment [4], the plasma confinement is better in the pres-
ence of islands and ∆r � a.

In an island placed on a rational surface with numbers
n and m, the uncompensated ion volume charge appears at
(∆r)2/D⊥ > (2πnR)2/D‖, where R is the toroidal radius.
Hence the island should be wider.

max{ρce, 2πnR
√

D⊥/D‖ } < ∆r. (17)

D⊥/D‖ = (νei + νef⊥)(νei + νef‖ )/ω2
ce � 1. But for ITB

formation, the island should be narrow [12], i.e., ∆r � a.
Eq. (17) can be presented as follows:

max{ρce, (nρce/q)
√

(1 + νef⊥/νei)(1 + νef‖ /νei)}
< ∆r. (18)

From the obtained expressions and from the condition
[1–3]

L∂rωθ0 > γ (19)

using

∆ϕ ≈ 2πeNaL2, (20)

one can show

(∆ϕe/Ti)(ρ2
ci/Lδrsep) > γ/ωci. (21)

Thus, the shear can damp low-frequency instabilities with
a growth rate γ < ωci.

5. Conclusions
It is shown that the amplitude of the radial electron os-

cillations is smaller or the vortex is narrower in the radial
direction for a larger shear ∂rωθo and a steeper radial dis-
tribution of the plasma density in nuclear fusion plasma.
The latter helps ITB formation. The amplitude of vortex
saturation is inversely proportional to ∂rωθo. It also pro-
motes ITB formation. The convective diffusion equation
for electron transport has been derived.

It is shown that the value of the shear can be large.
The shear is formed by sufficient plasma heating near the
low-order rational surface with a poloidal chain of narrow
magnetic islands. The time of shear formation is short. The
conditions for the island width that lead to shear formation
are derived. Even narrow islands can lead to shear forma-
tion. The condition for island width that do not lead to
anomalous transport are known. This shear can damp in-
stabilities with a growth rate smaller than the ion cyclotron
frequency γ < ωci.
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