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The conjugate variable method, an essential ingredient in the path-integral formalism of classical statistical
dynamics, is used to apply the Hamilton-Lie perturbation theory to a system of ordinary differential equations that
does not have the Hamiltonian dynamic structure. The method endows the system with this structure by doubling
the unknown variables; hence, the canonical Hamilton-Lie perturbation theory becomes applicable to the system.
The method is applied to two classical problems of plasma physics to demonstrate its effectiveness and study
its properties: a non-linear oscillator that can explode and the guiding center motion of a charged particle in a
magnetic field.
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1. Introduction
We begin by considering the following two non-linear

oscillators

dx
dt
= y,

dy
dt
= −x − εx3, (1)

and

dx
dt
= y,

dy
dt
= −x − εy3, (2)

where t is the time variable. When ε = 0, both oscillators
reduce to an identical harmonic oscillator. When ε � 0, the
equations have quite different properties. Equation (1) has
the variational principle in the phase space (x, y) [1], and
performs the Hamiltonian motion under the Hamiltonian

h(x, y) =
x2

2
+
y2

2
+
ε

4
x4. (3)

One of the properties peculiar to the Hamiltonian motion
is, of course, the volume invariance of the flow of motion
in the phase space (x, y). Equation (2) does not have the
Hamiltonian structure and loses the invariant property of
the volume in the phase space (x, y).

Next, an important property of Eq. (1) from a practical
point of view is that it can be analyzed by a powerful tool,
the Hamilton-Lie perturbation method [2]. This method,
however, is not applicable for Eq. (2); therefore, different
approximation methods have been devised for Eq. (2), such
as the multi-scale expansion method [3]. These methods
abandon the viewpoint of Hamiltonian dynamics.

author’s e-mail: tokuda.shinji@jaea.go.jp

Since the Hamilton-Lie perturbation method is a pow-
erful analytical tool that enables us to investigate the prob-
lem deeply, it would be a significant contribution to the de-
velopment of approximation methods in physics if it were
made applicable for equations such as Eq. (2), which do
not have the Hamiltonian structure. This seems impossi-
ble since the Hamilton-Lie perturbation method assumes
the Hamiltonian structure of the equations. However, that
is not the case. We can endow any ordinary differential
equations with the Hamiltonian structure by doubling the
unknown variables. This technique is well known as the
conjugate variable method, and plays an essential role in
the path-integral formalism of classical statistical dynam-
ics [4]. Once we make the Hamiltonian for Eq. (2) by the
conjugate variable method, we can systematically apply
the Hamilton-Lie perturbation method to the equation. In
the present paper, we report and also advocate the con-
jugate variable method for the Hamilton-Lie perturbation
method.

In Sec. 2, after briefly reviewing the conjugate variable
method, we apply the Hamilton-Lie perturbation method
to Eq. (2) up to the second order O(ε2). We demonstrate
that the equations for the original variables are obtained
in a closed form that does not include conjugate variables,
although the conjugate variable method doubles the num-
ber of variables. In Sec. 3, we apply the conjugate variable
method to the guiding center motion of a charged particle
in a magnetic field. This is a classical problem with a long
history in plasma physics [5,6]. The most elegant and pro-
found solution method will be the non-canonical perturba-
tion method [7]. We show that when the conjugate variable

c© 2008 The Japan Society of Plasma
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method is used, the guiding center problem can be solved
by the canonical perturbation method. Our conclusions are
given in Sec. 4, with discussion on further applications of
the present method to plasma physics.

2. Perturbation Analysis of a Non-
Linear Oscillator by Introducing
Conjugate Variables

Following Ref. [4], we can construct a fundamental 1-
form for Eq. (2) as follows

γ = q(dx − ydt) + p[dy + (x + εy3)dt]

= qdx + pdy − hdt. (4)

Here, q(res. p) is called the conjugate variable with respect
to x(res. y); h is the Hamiltonian for the 1-form and is
given by

h = h(0) + εh(1), (5)

h(0) = qy − px, (6)

and

h(1) = −py3. (7)

Since Eq. (4) is a canonical 1-form, the equations of mo-
tion for the phase space coordinates (x, q, y, p) are obtained
from the Hamilton equation

dx
dt
=
∂h
∂q
= y, (8)

dq
dt
= −∂h

∂x
= p, (9)

dy
dt
=
∂h
∂p
= −x − εy3, (10)

and
dp
dt
= −∂h

∂y
= −q + 3εpy2. (11)

The equation of motion for any function of the phase space
coordinates is also expressed by the Hamilton equation.
For example, the equation of motion for the energy of the
oscillator,

E = 1
2

(x2 + y2), (12)

is given by

dE
dt
= {E, h} = −εy4 ≤ 0, (13)

where { , } is the Poisson bracket in the phase space
(x, q, y, p).

The 1-form, Eq. (4), appears to be only nominal and
therefore useless. It would be so if the only solution were
to solve the differential equations, Eqs. (8)-(11), directly.
However, the Hamiltonian structure provides other pow-
erful devices to solve the equation of motion: coordinate
transformations and gauge functions in the phase space.
We will show them for the non-linear oscillator, Eq. (2),
below.

2.1 Harmonic oscillator with conjugate vari-
ables

We first examine the case of ε = 0, the harmonic oscil-
lator. Let us define the transformation from (x, y) to (a, θ)
by

x = a cos θ, y = −a sin θ. (14)

Then we have

qdx + pdy = [q cos θ − p sin θ]da

− a[q sin θ + p cos θ]dθ, (15)

and

h(0) = −a(q sin θ + p cos θ). (16)

These results imply the transformation from (a, θ, q, p) to
(a, θ,Q, P) defined by

Q = Q(q, p, a, θ) = q cos θ − p sin θ, (17)

and

P = P(q, p,a, θ) = −a(q sin θ + p cos θ). (18)

Then, we obtain the 1-form of the harmonic oscillator in
the phase space (a,Q, θ, P) given by

γ = Qda + Pdθ − h(0)dt, (19)

with the Hamiltonian

h(0) = P. (20)

Since h(0) is independent of a, Q and θ, the conjugate vari-
ables Q, a, P with respect to them are constants of motion.
On the other hand, the equation of motion for θ is

dθ
dt
=
∂h(0)

∂P
= 1. (21)

Consequently, we have

a(t) = a0, θ(t) = t + θ0, (22)

and

Q(t) = Q0, P(t) = P0, (23)

where a0, θ0, Q0 and P0 are arbitrary initial values, and
from Eq. (14) we have

x(t) = a0 cos(t + θ0), (24)

and

y(t) = −a0 sin(t + θ0). (25)

The inverse transformations of Eqs. (17) and (18) are

q = Q cos θ − P
a

sin θ, (26)
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and

p = −Q sin θ − P
a

cos θ, (27)

and q(t) and p(t) are easily obtained. Note that to perform
the transformations of Eqs. (17) and (18), it is indispens-
able to increase the variable (x, y) to (x, q, y, p).

For applying the Hamilton-Lie perturbation method, it
is convenient to introduce

A =
1
2

a2, (28)

and to replace Q/a with Q. The resultant 1-form remains
canonical,

γ = QdA + Pdθ − h(0)dt, (29)

with (A, θ,Q, P) being canonical coordinates.
Now, we return to Eq. (2) with ε � 0. The perturbed

Hamiltonian h(1) written in the phase space (A, θ,Q, P) is

h(1) = −py3 = −3
2

QA2 + QA2 fc(θ) + PA fs(θ)

= 〈h(1)〉 + h̃(1), (30)

and

〈h(1)〉 = −3
2

QA2, (31)

where fc(θ) and fs(θ) are periodic functions

fc(θ) = 2 cos 2θ − 1
2

cos 4θ, (32)

and

fs(θ) = −1
2

sin 2θ +
1
4

sin 4θ, (33)

and 〈 〉 represents the average with respect to θ.
The Hamilton equations of motion developed from the

total Hamiltonian h = h(0) + εh(1) are

dA
dt
=
∂h
∂Q
= −3

2
εA2 + εA2 fc(θ), (34)

dθ
dt
=
∂h
∂P
= 1 + εA fs(θ), (35)

dQ
dt
= − ∂h

∂A
= 3εQA

− ε[P fs(θ) + 2QA fc(θ)], (36)

and

dP
dt
= −∂h

∂θ
= −εA[P f ′s (θ) + QA f ′c (θ)]. (37)

These equations of motion are exact, and prove the effec-
tiveness of the conjugate variable method and the transfor-
mations among phase space coordinates. The Hamiltonian
h has a formal characteristic that h is linear in the conjugate
variables Q and P. Consequently, the equations for A and
θ, Eqs. (34) and (35), are closed; they do not contain the

conjugate variables. In contrast, the equations for Q and
P, Eqs. (36) and (37), are linear with coefficients that are
functions of time t determined implicitly by A and θ. We
also see that Eq. (34) predicts an explosion of amplitude A
for ε < 0.

Equations (34)-(37) can be systematically solved by
applying the canonical perturbation method, where the
gauge functions are thoroughly exploited; a summary is
given in Appendix A. It is shown that the canonical pertur-
bation method is applicable even if the amplitude A might
explode.

2.2 First-order canonical perturbation anal-
ysis

Following Ref. [2], we determine the gauge function
S (1) such that the Hamiltonian after the Lie transformation
is H(1) = 〈h(1)〉. From Eq. (A9) in Appendix A, the condi-
tion for this yields the partial differential equation for S (1)

∂S (1)

∂θ
= h̃(1). (38)

Here, we have used the conditions that S (1) is independent
of the time t, and have used

{S (1), h(0)} = {S (1), P} = ∂θS (1). (39)

Equation (38) is easily solved,

S (1) = QA2Fs(θ) + PAFc(θ), (40)

where

Fs(θ) = sin(2θ) − 1
8

sin(4θ), (41)

and

Fc(θ) =
1
4

cos(2θ) − 1
16

cos(4θ). (42)

The Hamiltonian in the phase space (Ā, θ̄, Q̄, P̄) after the
Lie transformation is

H = P̄ − 3ε
2

Q̄Ā2, (43)

and the equations of motion in the phase space (Ā, θ̄, Q̄, P̄)
are

dĀ
dt
=
∂H
∂Q̄
= −3

2
εĀ2, (44)

dθ̄
dt
=
∂H
∂P̄
= 1, (45)

dQ̄
dt
= −∂H

∂Ā
= 3εQ̄Ā, (46)

and

dP̄
dt
= −∂H

∂θ̄
= 0. (47)
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The solutions of these equations are easily obtained; for
ε < 0

Ā(t) = Ā0
1

1 − (3/2)Ā0|ε|t , (48)

where Ā0 is the initial value of Ā. On the other hand, the
solution

Q̄(t) = Q̄0

(
1 − 3

2
Ā0|ε|t

)2

, (49)

becomes zero at the time when Ā explodes (Q̄0 is the initial
value of Q̄); this reflects the conservation property of the
phase volume in the (A, θ,Q, P) space.

Let us observe the motion on the original phase space
(A, θ,Q, P). We need the generators g1

(1) and g2
(1) of the Lie

transformation (A, θ,Q, P)→ (Ā, θ̄, Q̄, P̄). They are

g1
(1) = −

∂S (1)

∂Q
= −A2Fs(θ), (50)

and

g2
(1) = −

∂S (1)

∂P
= −AFc(θ). (51)

The backward transformations are therefore given by

A = Ā − εg1
(1) = Ā − εĀ2Fs(θ̄), (52)

and

θ = θ̄ − εg2
(1) = θ̄ − εĀFs(θ̄). (53)

By applying them to x(t) =
√

2A(t) cos θ(t), we have

x(t) = a

(
1 − 3

4
a2|ε|t

)−1/2

cos(t) + O(ε, |ε|2t), (54)

where we set a =
√

2A0. We found that the solution given
by Eq. (54) accords with the solution given by the multi-
scale expansion method [3].

2.3 Second-order canonical perturbation
analysis

From Eq. (31) and Eq. (40), we have for Eq. (A22) in
Appendix A

{S (1), 〈h(1)〉} = −3
2

Fc(θ){PA,QA2} = −3
2

Fc(θ)PA2.

Notice that the Poisson bracket results in a linear function
of P. Similar but lengthy algebra with Eq. (A22) gives

ξ(2)
0 = −

PA2

2
[3Fc(θ) + fs(θ)Fs(θ)

− fc(θ)Fc(θ) + Fc(θ) f ′s (θ) − ( fs(θ))
2]

− QA3

2
[Fc(θ) f ′c (θ) − fs(θ) fc(θ)]. (55)

Due to the properties of the Poisson bracket, the second-
order Hamiltonian is still linear in the conjugate variables

P and Q, while ξ(2)
0 has powers of A higher than those in

h(1). Equation (55) can be re-arranged as

ξ(2)
0 = −

PA2

2
F(2)

P (θ) − QA3

2
F(2)

Q (θ) + 〈ξ(2)
0 〉, (56)

where F(2)
P (θ) and F(2)

Q (θ) are periodic functions whose av-

erages are zero, and the average of ξ(2)
0 is

〈ξ(2)
0 〉 =

27
64

PA2. (57)

Therefore, when we choose the gauge function in
Eq. (A21) as

S (2) =
PA2

2

∫
F(2)

P (θ)dθ +
QA3

2

∫
F(2)

Q (θ)dθ, (58)

the averaged Hamiltonian in the second order is

H = P̄ − 3ε
2

Q̄Ā2 − 27
64
ε2P̄Ā2. (59)

Let us first notice that since the averaged Hamiltonian H
is linear in P̄ and Q̄, they are not incorporated in the equa-
tions for Ā and θ̄. Next, the HamiltonianH does not have
θ̄ due to the averaging, the conjugate variable P̄ is the con-
stant of motion. We also see that the second-order per-
turbation does not influence the behavior of amplitude Ā,
which remains Eq. (48), but influences the behavior of θ̄,
the equation of which is

dθ̄
dt
=
∂H
∂P̄
= 1 − 27

64
ε2Ā2, (60)

and using Eq. (48), we have

θ̄(t) = θ0 + t − 9
32

(|ε|Ā0)

[
1

1 − 3/2|ε|Ā0t
− 1

]
. (61)

The second-order perturbation delays the phase because
dθ̄/dt− 1 < 0, irrespective of the sign of ε; the phase delay
becomes remarkable as t approaches the explosion time.

Finally, let us obtain the Lie transformation
(A, θ,Q, P) → (Ā, θ̄, Q̄, P̄). The generators produced
by S (2) are

g1
(2) = −

∂S (2)

∂Q
= −A3

2

∫
F(2)

Q (θ)dθ, (62)

and

g2
(2) = −

∂S (1)

∂P
= −A2

2

∫
F(2)

P (θ)dθ. (63)

Next, let us investigate the second-order effects of the gen-
erators g j

(1). By substituting Eqs. (50) and (51) into the
fourth term in the right-hand side of Eq. (A24), we get

(gν(1)∂ν)g
1
(1) = g

ν
(1)∂ν(−A2Fs)

= A3[2(Fs)
2 + Fc fc], (64)
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and

(gν(1)∂ν)g
2
(1) = g

ν
(1)∂ν(−AFc)

= A2[FsFc + Fc fs]. (65)

Here, g3
(1), g

4
(1) that contain the conjugate variables do not

contribute to the above results. Consequently, the back-
ward Lie transformation does not mix the original variables
A, θ with the conjugate variables Q, P.

Equation (65) implies that the Lie transformation does
not yield any secular terms in θ, but Eq. (64) produces a
secular term

〈2(Fs)2 + Fc fc〉 = 83
64
, (66)

and then the averaged solution of A is

A(t) = Ā(t)

(
1 +

83
128

(εĀ)2

)
, (67)

in the original phase space.
Although the conjugate variable method doubles the

variables, we obtain the equations of A and θ and their
Lie transformations unmixed with the conjugate variables
P and Q until the second order. These are the consequences
of the Poisson bracket’s properties and should be valid for
any orders, although a strong proof is not provided here.
If mixing occurred at each order, the conjugate variable
method would be complicated, and therefore, would not
be an effective tool.

3. Analysis of Charged Particle Mo-
tion
In the Cartesian coordinate system (x1, x2, x3), the

equation of motion for a charged particle with mass m and
electrical charge e in a magnetic field B (the Lorentz equa-
tion) is

dx j

dt
= u j,

du j

dt
=

e
m

(u × B) j, j = 1, 2, 3. (68)

By introducing the conjugate variables q j(res. y j) for
x j(res. u j), the fundamental 1-form for the Lorentz equa-
tion is constructed as

γ = q jdx j + y jdu j − Hdt, (69)

where the HamiltonianH is

H = u jq j +
e
m
y · (u × B). (70)

Here, the summation convention is implied for the repeated
index. Since the Hamiltonian H is linear in B, H is eas-
ily decomposed into unperturbed and perturbed parts when
expressing B = B0 + ε B̃. Therefore, as long as the unper-
turbed Hamiltonian made by B0 is solvable, the canoni-
cal perturbation method can be systematically applied to
Eq. (69).

We first study the guiding center motion in a uniform
magnetic field, and demonstrate that doubling the variables
enables us to perform a canonical transformation in such a
manner that the guiding center motion looks straight on
the transformed phase space [Eqs. (91) and (93)]. This is a
nontrivial result and is the starting point for the perturba-
tion analysis. In order to make the analysis intelligible, we
adopt a simple configuration of magnetic fields, Eq. (98).

3.1 Guiding center motion in a uniform
magnetic field

Let a uniform magnetic field be given by

B = Bb = Be3, (71)

where e3 is the unit vector along the z-axis. Also, let e1 and
e2 be unit vectors along the x- and y- axes, respectively.
Then, the Hamiltonian in Eq. (70) reads

H = u jq j + Ωy · (u × b), (72)

where Ω = eB/m. Following the theory of guiding center
motion [7], we introduce the auxiliary vectors

a = e1 cos θ − e2 sin θ, (73)

and

c = −e1 sin θ − e2 cos θ, (74)

where the angle θ is defined by

θ = tan−1

(
u · e1

u · e2

)
. (75)

The inverse transformations for Eqs. (73) and (74) are

e1 = a cos θ − c sin θ, (76)

and

e2 = −a sin θ − c cos θ. (77)

Then we have

u = u⊥c + u‖b, (78)

u × b = −u⊥a, (79)

and

da = cdθ, dc = −adθ. (80)

Here, let us introduce the guiding center coordinates
(R, u⊥, θ, u‖) by the transformation

x = R +
u⊥
Ω

a, R = (X, Y, Z). (81)

Then we have

dx = dR +
du⊥
Ω

a +
u⊥
Ω

dθc, (82)
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and

du = du⊥c + du‖b − u⊥adθ. (83)

These are well-known procedures; however, by applying
them in Eqs. (69) and (72), we have

q · dx + y · du = q · dR + y‖du‖

+

(qa

Ω
+ yc

)
du⊥

+

(qc

Ω
− ya

)
u⊥dθ, (84)

and

H = u‖q‖ + Ω
(qc

Ω
− ya

)
u⊥, (85)

where

q‖ = q · b, qa = q · a, qc = q · c, (86)

and y‖, ya and yc are similarly defined. Equations (84) and
(85) imply the transformations

qa

Ω
+ yc =

u⊥
Ω

P, (87)

and (qc

Ω
− ya

)
u⊥ = M. (88)

These are the transformations (ya, yc) �→ (P, M)

yc =
u⊥
Ω

P − qa

Ω
, (89)

and

ya = −M
u⊥
+

qc

Ω
, (90)

and we get a canonical 1-form

γ = q · dR + y‖du‖ + Pdμ + Mdθ − Hdt, (91)

where

μ =
u2⊥
2Ω

(92)

is the magnetic moment, and the Hamiltonian is given by

H = u‖q‖ + ΩM. (93)

Consequently, the transformation from (x, u, q, y) to
(R, u‖, μ, θ, q, y‖, P, M) is a canonical transformation that
has a trivially soluble Hamiltonian; the equations are

dR
dt
=
∂H
∂q
= u‖b, (94)

du‖
dt
=
∂H
∂y‖
= 0, (95)

dμ
dt
=
∂H
∂P
= 0, (96)

and

dθ
dt
=
∂H
∂M
= Ω. (97)

These results again demonstrate the effectiveness of the
conjugate variable method.

3.2 Canonical perturbation analysis of the
guiding center motion

We adopt a simple model where the magnetic fields
consists of

B = Bb + ε B̃(x), (98)

and B̃ is assumed to be independent of z and perpendicular
to b,

B̃(x) · b = 0. (99)

Following Ref. [8], we define the transformation from the
Cartesian coordinate system to the guiding center coordi-
nate system (R, u‖, μ, θ, q, y‖, P, M) using the uniform field;
the transformation is given by Eq. (81), and the vectors a
and c are defined by Eqs. (73) and (74). Consequently the
1-form remains Eq. (91), whereas the Hamiltonian consists
of

H = H (0) + h, (100)

where the unperturbed Hamiltonian is

H (0) = u‖q‖ + ΩM, (101)

and the perturbed Hamiltonian is given by

h = εΩy · (u × B̃(x)). (102)

Here, the perturbed magnetic field is normalized to the uni-
form magnetic field B.

Let LB be the characteristic length over which the per-
turbed magnetic field varies, and assume that the Larmor
radius ρ is much shorter than LB such that

ρ

LB
= O(ε), (103)

and we expand B̃(x) as

B̃(x) = B̃(R) + ε
u⊥
Ω

(a · ∇)B̃(R). (104)

Consequently, we have

h = εh(1) + ε2h(2), (105)

where the first-order Hamiltonian reads

h(1) = Ωy · (u × B̃(R)), (106)

and the second-order Hamiltonian reads

h(2) = u⊥y ·
[
u × (a · ∇)B̃(R)

]
. (107)

Based on the assumption, the perturbed field is written as

B̃(R) = B̃x(X, Y)e1 + B̃y(X, Y)e2. (108)

3.3 First-order perturbation analysis
The perturbed Hamiltonian h(1) can be
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easily expressed by the canonical coordinates
(R, u‖, μ, θ, q, y‖, P, M),

h(1) = Ωu⊥
(
y‖ − P

Ω
u‖

)
B̃a(R, θ) − MΩ

u‖
u⊥

B̃c(R, θ)

+ u‖(q1B̃x(R) + q2B̃y(R)) (109)

= h̃(1) + 〈h(1)〉, (110)

and

〈h(1)〉 = u‖(q1B̃x(R) + q2B̃y(R)). (111)

Here,

B̃a(R, θ) = B̃x(R) cos θ − B̃y(R) sin θ, (112)

and

B̃c(R, θ) = −B̃x(R) sin θ − B̃y(R) cos θ. (113)

These mean

B̃(R) = B̃a(R, θ)a + B̃c(R, θ)c. (114)

Let us make the equations of motion fromH = H (0)+εh(1).
They are

dX
dt
=
∂H
∂q1
= εu‖B̃x, (115)

dY
dt
=
∂H
∂q2
= εu‖B̃y, (116)

dZ
dt
=
∂H
∂q‖
= u‖, (117)

du‖
dt
=
∂H
∂y‖
= εΩu⊥ B̃a = εΩ(u × B̃) · b, (118)

dμ
dt
=
∂H
∂P
= −εu⊥u‖B̃a, (119)

and

dθ
dt
=
∂H
∂M
= Ω

{
1 − ε u‖

u⊥
B̃c

}
. (120)

The first three equations express the guiding center’s mo-
tion along the magnetic field lines, and the other three
equations are identical to the equation

du
dt
= Ωu × (b + ε B̃) (121)

expressed in terms of u‖, μ and θ.
The Poisson bracket in Eq. (A9) is, for the present

problem,

{S (1),H (0)} = u‖
∂S (1)

∂Z
+ Ω

∂S (1)

∂θ
− q‖

∂S (1)

∂y‖
. (122)

Therefore, we obtain an equation for S (1) that yields the
Hamiltonian averaged over θ

Ω
∂S (1)

∂θ
− q‖

∂S (1)

∂y‖
= h̃(1). (123)

Here, we used the assumption that S (1) is independent of
both time and Z. Equation (123) gives the solution

S (1) = −
(
q‖

u⊥
Ω
+ M

u‖
u⊥

)
B̃a(R, θ)

− u⊥
(
y‖ − u‖

Ω
P
)

B̃c(R, θ). (124)

The averaged Hamiltonian is therefore

H = H (0) + ε〈h(1)〉, (125)

and the equations of motion are

dX
dt
= εu‖ B̃x, (126)

dY
dt
= εu‖B̃y, (127)

dZ
dt
= u‖, (128)

du‖
dt
=
∂H
∂y‖
= 0, (129)

dμ
dt
=
∂H
∂P
= 0, (130)

and

dθ
dt
=
∂H
∂M
= Ω. (131)

Since the Hamiltonian H does not include the conjugate
variables y‖ and P, the corresponding variables u‖ and μ

(and consequently the kinetic energy E = Ωμ + u2
‖/2) are

conserved.

3.4 Second-order perturbation analysis
When we consider the averaged Hamiltonian,

Eq. (A22) is reduced to

〈ξ(2)
0 〉 = −〈h(2)〉 + 1

2
〈{S (1), h̃(1)}〉, (132)

since {S (1), 〈h(1)〉} is periodic with respect to θ, and con-
sequently its average vanishes. Our work is then re-
duced to calculating 〈{S (1), h̃(1)}〉 and 〈h(2)〉. For calculating
〈{S (1), h̃(1)}〉, it is convenient to express h̃(1) and S (1) as

h̃(1) = haB̃a + hcB̃c, (133)

and

S (1) = S aB̃a + S cB̃c. (134)

Here

ha = Ωu⊥
(
y‖ − P

Ω
u‖

)
, (135)

hc = −MΩ
u‖
u⊥
, (136)

S a = −
(
q‖

u⊥
Ω
+ M

u‖
u⊥

)
= −q‖

u⊥
Ω
+

hc

Ω
, (137)
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and

S c = −u⊥
(
y‖ − u‖

Ω
P
)
=

ha

Ω
. (138)

Using Eqs. (133) and (134), we have

{S (1), h̃(1)} = {S aB̃a, haB̃a} + {S aB̃a, hcB̃c}
+ {S cB̃c, haB̃a} + {S cB̃c, hcB̃c}. (139)

Averaging over θ operates on B̃a and B̃c, resulting in

〈(B̃a)2〉 = 〈(B̃c)2〉 = 1
2
|B̃|2, (140)

and

〈B̃aB̃c〉 = 0. (141)

After lengthy algebraic computation for the right-hand side
of Eq. (139), the details of which are shown in Appendix B,
we have

〈{S (1), h̃(1)}〉 = 1
2
|B̃|2

[
2q‖u‖ − M

μ
(u‖)2

]
. (142)

Now let us rewrite h(2) as

h(2) = u⊥y · [u ×W] . (143)

Here,

W = (a · ∇)B̃(R)

= W1e1 +W2e2 (144)

= Wa a +Wcc, (145)

W1 = (cos θ∂x − sin θ∂y)B̃x(R), (146)

W2 = (cos θ∂x − sin θ∂y)B̃y(R), (147)

Wa = W1 cos θ −W2 sin θ, (148)

and

Wc = −W1 sin θ −W2 cos θ. (149)

Averaging them over θ gives

〈W1〉 = 〈W2〉 = 0, (150)

〈Wa〉 = 1
2

(∂xB̃x + ∂yB̃y) = 0, (151)

and

〈Wc〉 = 1
2

(∂yB̃x − ∂xB̃y) = −1
2

Jz, (152)

where Jz is the current density

Jz = ∂xB̃y − ∂yB̃x. (153)

Applying Eqs. (148) and (149) to Eq. (143), we have

u ×W = u⊥Wa b − u‖Wac + u‖Wca,

and then

h(2) = y‖(u⊥)2Wa + u⊥u‖(yaWc − ycWa). (154)

Applying the transformation formula, Eqs. (89) and (90),
for Eq. (154) yields h(2) expressed in the phase space coor-
dinates (R, u‖, μ, θ, q, y‖, P, M)

h(2) =
(u⊥)2

Ω
Wa(Ωy‖ − Pu‖)

− Mu‖Wc +
u⊥
Ω

u‖(q1W1 + q2W2), (155)

and averaging it gives

〈h(2)〉 = −Mu‖〈Wc〉 = Mu‖
2

Jz. (156)

From Eqs. (142) and (156), we obtain the averaged second-
order Hamiltonian

〈H(2)〉 = −〈ξ(2)
0 〉 = 〈h(2)〉 − 1

2
〈{S (1), h̃(1)}〉

=
Mu‖

2
Jz − 1

2
|B̃|2

[
q‖u‖ − M

2μ
(u‖)2

]
, (157)

and then the total Hamiltonian

H = H(0) + ε〈H(1)〉 + ε2〈H(2)〉, (158)

where

H(0) = q‖u‖ + ΩM, (159)

and

〈H(1)〉 = u‖(q1B̃x(R) + q2B̃y(R)). (160)

Again, we can observe that the Hamiltonian H retains
linearity in the conjugate variables (q, y‖, P, M). Conse-
quently, the equations of motion for (R, u‖, μ, θ) do not con-
tain any conjugate variables; they are

dX
dt
=
∂H
∂q1
= εu‖B̃x(R), (161)

dY
dt
=
∂H
∂q2
= εu‖B̃y(R), (162)

dZ
dt
=
∂H
∂q‖
= u‖

[
1 − ε

2

2
|B̃|2

]
, (163)

du‖
dt
=
∂H
∂y‖
= 0, (164)

dμ
dt
=
∂H
∂P
= 0, (165)

and

dθ
dt
=
∂H
∂M
= Ω + ε2

[
Jz

2
u‖ +

(u‖)2

2μ
|B̃|2

]
. (166)

It is important to study whether the conjugate variable
method gives the same results as those of the usual canoni-
cal (or non-canonical) Hamilton-Lie perturbation method
or the multi-scale expansion method. However, this
would require rigorous investigation with deep mathemat-
ical analysis, and therefore remains open to future study.
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4. Summary
It has been shown that the conjugate variable method

enables us to apply the Hamilton-Lie perturbation method
systematically to any system of ordinary differential equa-
tions that does not have the Hamiltonian dynamic struc-
ture. Although the method doubles the unknown variables,
the equations for the original variables are derived without
mixing with the conjugate variables at each order in the
canonical perturbation analysis.

Several problems are open to future study. One impor-
tant problem is to determine the equivalence of the method
proposed in the present work with other methods, that is,
whether the results by the conjugate variable method are
the same as those by other methods, such as the usual
canonical (or non-canonical) perturbation method, and the
classical multi-scale expansion method. Another inter-
esting problem in plasma physics is to apply the present
method to eigenvalue equations related to MHD stabil-
ity analysis, such as the MHD ballooning mode equation.
Studies on these problems will be reported in the near fu-
ture.
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Appendix A: Summary of Canonical
Hamilton-Lie Perturbation Analysis

Following Ref. [2], let a 1-form be given by

γ = γ(0) + εγ(1) + ε2γ(2) + · · · , (A1)

in a phase space (z1, · · · , z2N) with z0 := t, and let γ(0) be
integrable. Recall that, with respect to the generators gν for
the Lie transformation, the Lie derivative Lg for a 1-form
γ is defined by

(Lgγ)μ = gνωνμ, μ, ν = 0, · · · , 2N. (A2)

Here

ωνμ = ∂νγμ − ∂μγν (A3)

is the Lagrangian tensor; the inverse of it, which is ex-
pressed by Jk j, is the Poisson tensor. The 1-form Γ after
the Lie transformation

Γ = γ(0) + εΓ(1) + ε2Γ(2) + · · · , (A4)

reads

Γ(1) = −L(1)γ
(0) + dS (1) + γ(1), (A5)

and

Γ(2) = −L(2)γ
(0) + dS (2) + ξ(2), (A6)

where ξ(2) is given by

ξ(2) = γ(2) − L(1)γ
(1) +

1
2

(L(1))2γ(0). (A7)

In this appendix, we give the expression for ξ(2) assuming
that the 1-form is canonical. In the following, let h( j) be
the Hamiltonian in the corresponding form γ( j).

In the first-order canonical perturbation analysis, the
generators g j

(1) for space variables are given by

g
j
(1) = ∂kS (1)Jk j, (A8)

where S (1) is the gauge function. The transformed Hamil-
tonian H(1) reads

−H(1) = ∂tS
(1) + {S (1), h(0)} − h(1), (A9)

where the Poisson bracket {S (1), h(0)} is defined by

{S (1), h(0)} = ∂kS (1)Jk j∂ jh
(0). (A10)

In Hamilton-Lie perturbation analysis, the gauge function
S (1) is determined such that the Hamiltonian H(1) becomes
simple. It was found that ξ(2) in Eq. (A7) can be expressed
in a simple form, since γ(1) and γ(2) are canonical.

We start with the calculation of L(1)γ
(1) in Eq. (A7).

Let us tentatively write the gauge function defined accord-
ing to the first-order perturbation analysis, Eq. (A9), as φ.
Then the generators read

g j = ∂kφ Jk j ( j � 0), (A11)

and the generator for the time is g0 = 0. The Lie derivative
of γ(1) with respect to g j results in

[Lφγ(1)] j = 0, (A12)

and

[Lφγ(1)]0 = −∂kφJk j∂ jh
(1). (A13)

Consequently, we have

Lφγ(1) = −{φ, h(1)}dt. (A14)

By calculation of (L(1))2γ(0) in Eq. (A7) using a procedure
similar to that used for Eq. (A14), we have

Ω = Lφγ(0) = ∂ jφ dz j − {φ, h(0)}dt. (A15)

Next, let ḡ j = ∂kψJk j be generators defined by another
function ψ, and operate Lψ on Ω. Then we have

LψLφγ(0) = −{ψ, {φ, h(0)}}dt. (A16)

By applying Eq. (A16) in Eq. (A7), we have

(Lφ)2γ0 = −{φ, {φ, h(0)}}dt. (A17)

From Eqs. (A14) and (A17), and from the assumption that
γ(2) = −h(2)dt, we observe that ξ(2) is canonical, and obtain
the second-order Hamiltonian

ξ(2)
0 = −h(2)+{S (1), h(1)}− 1

2
{S (1), {S (1), h(0)}}. (A18)
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Here, let us return to Eq. (30). The gauge function S (1) is
determined such that

{S (1), h(0)} = h̃(1). (A19)

We have therefore in Eq. (A18)

{S (1), h(1)} − 1
2
{S (1), {S (1), h(0)}}

= {S (1), 〈h(1)〉} + 1
2
{S (1), h̃(1)}. (A20)

The second-order Hamiltonian is

−H(2) = {S (2), h(0)} + ξ(2)
0 , (A21)

and

ξ(2)
0 = −h(2) + {S (1), 〈h(1)〉} + 1

2
{S (1), h̃(1)}. (A22)

We can apply the same procedure as the first-order analy-
sis for Eq. (A21) to determine the gauge function S (2) that
makes the transformed Hamiltonian H(2) as simple as pos-
sible. From S (1) and S (2) we get the generators g j

(1) and

g
j
(2), and we can construct the successive Lie transforma-

tion from (z̄μ) to (zμ)

zμ = exp(−ε2L(2)) exp(−εL(1))I
μ(z̄), (A23)

where Iμ(z̄) = z̄μ is the coordinate function. By expanding
the right-hand side to O(ε2), we have

z j = z̄ j − εg j
(1)(z̄

μ) − ε2g
j
(2)(z̄

μ)

+
ε2

2
[(gν(1)∂ν)g

j
(1)](z̄

μ). (A24)

When we substitute z̄ j(t), the solutions of the second-order
analysis, into the right-hand side of Eq. (A24), we obtain
the solution z j(t) in the original phase space. Note that
when S (1) is used for the fourth term of Eq. (A24), we have

(gν(1)∂ν)g
j
(1) = ∂μS (1)∂ν∂σS (1)JμνJσ j. (A25)

Appendix B: Calculation of {S(1), h̃(1)}
By calculating the Poisson bracket in the right-hand

side of Eq. (139) and using Eqs. (140) and (141), we obtain

〈{S aB̃a, haB̃a}〉 = 1
2
|B̃|2{S a, ha}, (B1)

〈{S aB̃a, hcB̃c}〉 = 1
2
|B̃|2∂M(S ahc), (B2)

〈{S cB̃c, haB̃a}〉 = 〈B̃cB̃a〉{S c, ha} = 0, (B3)

and

〈{S cB̃c, hcB̃c}〉 = 1
2
|B̃|2{S c, hc}. (B4)

By adding Eqs. (B1), (B2), and (B4), we get

〈{S (1), h̃(1)}〉 = 1
2
|B̃|2 [{S a, ha} + {S c, hc}
+ ∂M(S ahc)] . (B5)

Next, from Eqs. (136) and (138), we get

{S a, ha} = − 1
Ω
{q‖u⊥, ha} + 1

Ω
{hc, ha},

and

{S c, hc} = 1
Ω
{ha, hc}.

Then Eq. (B5) is further reduced to

〈{S (1), h̃(1)}〉= |B̃|
2

2

[
−{q‖u⊥, ha}

Ω
+∂M(S ahc)

]
. (B6)

Finally, by substituting

{q‖u⊥, ha} = −Ωq‖u‖, (B7)

and

∂M(S ahc) = q‖u‖ − (u‖)2

μ
M, (B8)

in Eq. (B6), we obtain Eq. (142).
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