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A new matching scheme for linear magnetohydrodynamic (MHD) stability analysis is proposed in a form
offering tractable numerical implementation. This scheme divides the plasma region into outer regions and inner
layers, as in the conventional matching method. However, the outer regions do not contain any rational surface
at their terminal points; an inner layer contains a rational surface as an interior point. The Newcomb equation
is therefore regular in the outer regions. The MHD equation employed in the layers is solved as an evolution
equation in time, and the full implicit scheme is used to yield an inhomogeneous differential equation for space
coordinates. The matching conditions are derived from the condition that the radial component of the solution
in the layer is smoothly connected to those in the outer regions at the terminal points. The proposed scheme is
applied to the linear ideal MHD equation in a cylindrical configuration, and is proved to be effective from the
viewpoint of a numerical scheme.
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The method of asymptotic matching is well known
in magnetohydrodynamic (MHD) stability analysis for a
high-temperature, magnetically confined plasma, such as a
tokamak [1, 2]. By assuming that an MHD mode is close
to the marginal stability, the method divides the plasma re-
gion into outer regions and inner layers. An outer region is
far from any rational surfaces for the MHD mode consid-
ered; the inertial effects there, as well as other dissipative
effects, such as resistivity, can be neglected. The mode
is then described by the Newcomb equation, an inertia-
free linear ideal MHD equation [3]. On the other hand,
the inner layer is a thin layer around a rational surface,
where all effects should be retained in the MHD equation
employed in the analysis. The width of a layer is deter-
mined by the plasma inertia (growth rate of an unstable
ideal MHD mode) or the plasma resistivity; it approaches
zero as the growth rate or the resistivity reduces to zero.
By stretching the time and the radial coordinate in the
layer, the MHD equation can be reduced to the so-called
inner layer equation [4,5]. Asymptotic matching of the so-
lution of the inner layer equation with that of the New-
comb equation determines the stability of the ideal or re-
sistive MHD mode [6, 7]. Several numerical methods for
solving the inner layer equation have been reported [8, 9].
Several authors have developed computer codes for solv-
ing the Newcomb equation for one-dimensional [6,10] and
two-dimensional configurations [11–13].

However, a computer code based on asymptotic
matching has not been successfully developed for routine
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use in MHD stability analysis of tokamaks, although the
method itself was published in 1963 [1]. The Newcomb
equation is singular at each rational surface where two in-
dependent solutions exist; one (dominant solution) is not
square integrable and is strongly singular; the other (sub-
dominant solution) is square integrable. The ratio of the
subdominant solution to the dominant solution is called
matching data, and plays a crucial role in determining the
behavior of the MHD mode [6, 8]. The numerical exper-
iments have revealed that the matching data are sensitive
to the local accuracy of the MHD equilibrium and also the
local mesh structure at rational surfaces. Therefore, deter-
mining the stability of MHD modes based on the matching
data thus obtained is difficult, or even intractable. These
seem to be the main reasons for the lack of such computer
codes. The matching approach is nevertheless a poten-
tial numerical method for MHD stability analysis, since it
promises a fast executing program that can routinely pro-
vide stability analysis.

In the present paper, we propose a new matching
scheme that is tractable from the numerical viewpoint. We
illustrate the underlying idea with the simplest MHD equa-
tion — the linear ideal MHD equation in a cylindrical con-
figuration r ∈ (0, a), where r denotes the radial coordinate
and a the plasma radius. The unknown variable is the dis-
placement vector ζ(r) [14,15]. We divide the interval (0,a)
into three sub-intervals: (0, rL), (rL, rR), and (rR, a); (rL, rR)
is a thin interval that contains the rational surface. The
other sub-intervals are regarded as the outer regions. We
solve the Newcomb equation in (0, rL) and (rR, a), which
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is the differential equation on y(r), the radial component of
ζ(r). In the interval (rL, rR), which is the inner layer in the
present approach, the evolution equation is solved with no
approximation. We apply the full implicit scheme to the
evolution equation, and obtain an inhomogeneous linear
differential equation with respect to the space coordinate r.
We solve it using a finite element method [15]. And we de-
rive the matching conditions by imposing on the solutions
the condition that y(r) in the layer should be smoothly con-
nected to y(r) in the outer regions at r = rL and r = rR.

To develop the matching scheme, we employ the well-
known linear ideal MHD equation

ρ∂2
t ζ(r, t) = F[ζ(r, t)], (1)

in the cylindrical coordinate system (r, θ, z) with 0 ≤ r ≤
a; the infinitesimal displacement of plasma is assumed to
be ζ(r, t) exp(imθ − ikz), the density of plasma is ρ, and
the force operator is F [14]. For simplicity, we assume the
fixed boundary condition y(a, t) = 0, where y(r, t) is the
radial component of ζ(r, t). We solve Eq. (1) around layer
(rL, rR), where the inertial term cannot be neglected, using
the full implicit scheme

ρζn+1 − (Δt)2F[ζn+1] = Sin[ζ], (2)

Sin[ζ] = ρ(2ζn − ζn−1), (3)

where ζn(r) = ζ(r, nΔt) and Δt is the time step in the
scheme. Equation (2) reduces to an inhomogeneous lin-
ear differential equation of second order in yn+1, the radial
component of ζn+1, which should be solved with appro-
priate boundary conditions. The two other components of
ζn+1 can be expressed by the linear relations in yn+1 and
dyn+1/dr; this is the characteristic feature of the ideal MHD
equation, and is fully exploited in the present formulation.
In the outer regions, by neglecting the inertia term we have

F[ζ(r, t)] = 0. (4)

Equation (4) reduces to the Newcomb equation, which is a
linear differential equation of the second order for y(r)

L[r, d/dr]y(r) = 0. (5)

First, we solve Eq. (2) in the interval (rL, rR). Let Gin,L(r)
be the solution of the homogeneous equation

ρζ − (Δt)2F[ζ] = 0, (6)

under the boundary conditions

Gin,L(rL) = 1, Gin,L(rR) = 0, (7)

where Gin,L(r) is the radial component of Gin,L(r). Simi-
larly, let Gin,R(r) be the solution of Eq. (6), whose radial
component satisfies the boundary conditions

Gin,R(rL) = 0, Gin,R(rR) = 1. (8)

Next let Hn+1
in (r) be the solution of Eq. (2) under the bound-

ary conditions

Hn+1
in (rL) = 0, Hn+1

in (rR) = 0, (9)

where Hn+1
in (r) is the radial component of Hn+1

in . Using
Gin,p(r) (p = L,R) and Hn+1

in (r), the solution of Eq. (2),
whose radial component has the values ξn+1

L at rL and ξn+1
R

at rR, is given by

ζn+1
in (r) = ξn+1

L Gin,L (r) + ξn+1
R Gin,R (r)

+Hn+1
in (r) . (10)

The radial component of ζn+1
in (r) is

yn+1
in (r) = ξn+1

L Gin,L (r) + ξn+1
R Gin,R (r)

+ Hn+1
in (r) . (11)

Let us now solve the Newcomb equation — Eq. (5) in
(rR, a). The solution can be expressed as

yR (r, t) = ξR (t) Gout,R (r) , (12)

where ξR (t) is the undetermined constant, and Gout,R(r) is
the solution of Eq. (5) under the boundary conditions

Gout,R (rR) = 1, Gout,R (a) = 0. (13)

Note that Gout,R(r) is regular and square integrable in the
interval [rR, a] = {r : rR ≤ r ≤ a}, since the rational surface
is not contained in [rR, a]. According to the ideal MHD
equation, the other two components of ζ can be expressed
by the linear relations in y and dy/dr. Consequently, the
solution of Eq. (4) is expressed as

ζR(r, t) = ξR(t)Gout,R(r), (14)

where the vector function Gout,R(r) is constructed from
Gout,R(r). The outer solution in (0, rL) is similarly con-
structed. Let us write the solution of the Newcomb equa-
tion in (0, rL) as

yL (r, t) = ξL (t) Gout,L (r) , (15)

using the undetermined constant ξL (t) and the solution
Gout,L (r) of the Newcomb equation under the boundary
condition

Gout,L (rL) = 1, (16)

and the regularity condition at r = 0. Then, the solution of
Eq. (4) in (0, rL) is given by

ζL (r, t) = ξL (t) Gout,L (r) , (17)

where the vector function Gout,L (r) is constructed from
Gout,L (r).

From this procedure for constructing solutions, we al-
ready have

yn+1
in (rL) = yn+1

L (rL), yn+1
in (rR) = yn+1

R (rR), (18)
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where yn+1
p (r) = yp(r, (n + 1)Δt) (p = R,L). We further

impose the condition, which is the matching condition in
the present scheme, that

dyn+1
in

dr

∣∣∣∣∣∣
rL

=
dyn+1

L

dr

∣∣∣∣∣∣
rL

, (19)

dyn+1
in

dr

∣∣∣∣∣∣
rR

=
dyn+1

R

dr

∣∣∣∣∣∣
rR

. (20)

This condition yields a linear equation on ξn+1
L and ξn+1

R
(the symbol ′ stands for d/dr):

A
[
ξn+1

L
ξn+1

R

]
=

[
(Hn+1

in )′(rL)
(Hn+1

in )′(rR)

]
, (21)

where

A =
[
G′out,L(rL)−G′in,L(rL) −G′in,R(rL)
−G′in,L(rR) G′out,R(rR)−G′in,R(rR)

]
.

(22)

The linear equation, and therefore the matching problem, is
easily solved, as long as detA � 0; the condition detA = 0
relates to the eigenvalue problem

ρλζ(r, t) = F[ζ(r, t)], (23)

and this interesting aspect will be discussed in a forthcom-
ing paper. Notice that it is Hin(r) in the thin layer that
should be updated at every time step. It is not necessary
to update Gout,p(r) and Gin,p(r) (p = R,L); the matrix A is
constant in time, and new ξnL, ξ

n
R are obtained from Eq. (21)

for the updated Hin(r). This saves substantial computa-
tional costs, in terms of both memory size and CPU time.

The finite element method uses linear elements for
Eqs. (2) and (4). The following examples are computed for
a uniform mesh with a fine mesh size of 4×10−6 to capture
the structure of a weakly unstable MHD mode, whereas the
time step is large; Δt = 0.1ωpa.

Figure 1 illustrates the present scheme applied to the
m = 1 internal kink mode for 2πR0 = 60 (k = 2π/R0). The
safety factor q is shown by the dotted-dashed line. The
q = 1 surface locates at r = 0.4. The matching points are
rL = 0.35 and rR = 0.45 (Δr := rR − rL = 0.1). The
“◦” symbols denote the internal kink mode, obtained by
globally solving the linear ideal MHD equation Eq. (1) in
its full range (0, 1). The inner layer solution is shown by
the solid line, and the outer solutions are shown by dotted
lines. The solutions constructed by the matching procedure
are indistinguishable from those from the global solution.
The enlargements around the matching points show that
the inner layer solutions connect smoothly to each outer
solution.

Figure 2 shows the time evolution of ξL(t), indicated
by the broken line, and ξR(t), indicated by the dotted line,
whereas the solid line indicates the time evolution of the
norm of the global solution. ξL(t) and ξR(t) grow with
the growth rate γ = 2.7 × 10−2ωpa, which is close to the

Fig. 1 The radial displacement of the m = 1 internal kink mode
for 2πR0 = 60 (k = 2π/R0). The safety factor q is shown
by a dotted-dashed line; the q = 1 surface is located at
r = 0.4. The outer and inner layer solutions using the
new scheme are indistinguishable from the solution in its
full range (0, 1); rL = 0.35, rR = 0.45. Enlargements
around the matching points show that each inner layer
solution connects smoothly to each outer solution.

Fig. 2 The evolutions of ξR (dotted line), ξL (broken line), and
the norm of the global solution (solid line). The estimated
growth rates of ξR, ξL are γ = 2.7×10−2ωpa, and are close
to that from the global solution, γ = 2.6 × 10−2ωpa (ωpa

denotes the Alfven frequency at the plasma surface).

growth rate estimated from the norm of the global solution,
γ = 2.6 × 10−2ωpa (ωpa: Alfven frequency at the plasma
surface).

It is important to study the effects of Δr, the width of
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Fig. 3 Δr dependence of the growth rate γ of the solution by the
matching scheme; the growth rate is normalized to γglobal,
the growth rate by the global solution. γ agrees well with
γglobal for Δr ≥ 0.2. When Δr ≤ 0.1, we have γ > γglobal;
it is understood that the kinetic energy is underestimated
for the solution by the matching scheme with a too thin
layer.

the inner layer, on the solution. Figure 3 shows the depen-
dence of the growth rate of the matching scheme solution
on Δr. The growth rate is normalized to γglobal, the growth
rate from the global solution. The growth rate agrees well
with γglobal for Δr ≥ 0.2. When Δr ≤ 0.1, we have
γ > γglobal; it is understood that the matching scheme un-
derestimates the kinetic energy for the solution. When Δr
is chosen to be less than 0.05, we did not obtain a solution
that grew from the initial noise level within the simulation
time, ωpat = 400. Figure 4 shows the matching scheme er-
ror of y(r) from the global solution as a function of r. The
solid, broken, and dotted lines represent Δr = 0.3, 0.2, and
0.1, respectively. Notice that maximum in y(r) is unity. We
observe that the agreement between y(r) and the global so-
lution is already good for Δr = 0.1. We also observe that
the error profile is unsymmetrical with respect to r = 0.4
— the position of q(r) = 1. The magnetic shear is stronger
on the right side of q > 1 than the left side of q < 1; hence
the inertia-free approximation is more valid on the right
side than the left side. We can conclude that these results
verify the present scheme for MHD stability analysis.

In summary, we have proposed a new matching
scheme for MHD stability problems that is tractable from
a numerical viewpoint. We have presented the formulation
and the numerical tests using the linear ideal MHD equa-
tion. The new scheme provides the matching conditions in
the form of the linear equation, which can be solved eas-
ily, on the values of the radial displacement at the match-
ing points. We emphasize that the implicit scheme of the

Fig. 4 The matching scheme error of the solution y(r) from the
global solution; the solid, broken, and dotted lines are
for Δr = 0.3, 0.2, and 0.1, respectively. The agreement
between y(r) and the global solution is already good for
Δr = 0.1. The error profile is unsymmetrical with respect
to r = 0.4, the position of q(r) = 1. The magnetic shear
is stronger on the right side of q > 1 than the left side of
q < 1; hence the inertia-free approximation is more valid
for the right than the left side.

evolution equation is crucial in deriving the matching con-
ditions. We also emphasize that the new scheme in the
example of Δr = 0.1 in Fig. 1 reduces the CPU time to one
tenth of that required when the equation is solved for the
full range.

On adopting the present scheme, we can flexibly
change the physical model from the linear ideal MHD
equation to more complex MHD equations, around an ar-
bitrarily chosen rational surface. We can easily clarify the
new effects on MHD stability at that rational surface. One
of such MHD equations is the Frieman-Rotenberg equa-
tion that describes ideal MHD motion in a rotating plasma
[16, 17]. This equation has recently received attention in
the theory of resistive wall modes [18]. Another interesting
subject is the application to resistive MHD modes. While
for ideal modes the layer width is determined by the growth
rate and therefore so-called a priori estimation of the width
is difficult, for resistive MHD modes it can be estimated
in advance by the electrical resistivity at the rational sur-
face. The new scheme is expected to substantially reduce
the CPU time required for such problems. Applications to
those problems will be reported in the near future.

[1] H.P. Furth, J. Killeen and M.N. Rosenbluth, Phys. Fluids 6,
459 (1963).

[2] R.D. Hazeltine and J.D. Meiss, Plasma Confinement
(Addison-Wesley, Redwood, 1992).

[3] W.A. Newcomb, Ann. Phys. (N.Y.) 10, 232 (1960).

039-4



Plasma and Fusion Research: Letters Volume 3, 039 (2008)

[4] A.H. Glasser, J.M. Greene and J.L. Johnson, Phys. Fluids
18, 875 (1975).

[5] A.H. Glasser, J.M. Greene and J.L. Johnson, Phys. Fluids
19, 875 (1976).

[6] A. Pletzer and R.L. Dewar, J. Plasma Phys. 45, 427 (1991).
[7] S. Tokuda, Nucl. Fusion 41, 1037 (2001).
[8] A.H. Glasser, S.C. Jardin and G. Tesauro, Phys. Fluids 27,

1225 (1984).
[9] S. Tokuda, J. Plasma Fusion Res. 77, 276 (2001).

[10] S. Tokuda and T. Watanabe, J. Plasma Fusion Res. 73, 1141
(1997).

[11] A. Pletzer, A. Bondeson and R.L. Dewar, J. Comput. Phys.

115, 530 (1994).
[12] S. Tokuda and T. Watanabe, Phys. Plasmas 6, 3012 (1999).
[13] A.H. Glasser, Los. Alamos Report LA-UR-95-528 (1997).
[14] I.B. Bernstein, E.A. Frieman, M.D. Kruskal and R.M. Kul-

srud, Proc. R. Soc. A244, 17 (1958).
[15] R. Gruber and J. Rappaz, Finite Elements Methods in Lin-

ear Ideal Magnetohydrodynamics (Springer, Berlin, 1985).
[16] E. Frieman and M. Rotenberg, Rev. Mod. Phys. 32, 898

(1960).
[17] S. Tokuda, J. Plasma Fusion Res. 74, 503 (1998).
[18] L.-J. Zheng, M. Kotschenreuther and M.S. Chu, Phys. Rev.

Lett. 95, 25003 (2005).

039-5


