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Spectral Effect of Zonal Flows and Enhanced Growth Rate
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The effect of the spectrum of the radial wave number of zonal flows on zonal flow generation is theoreti-
cally investigated using the Hasegawa-Mima turbulence model by representing the spectrum by means of two
monochromatic waves. Based on this method, we explored a ten-wave coupling model of modulational instabil-
ity. We found that the zonal flow generation is qualitatively different in cases with and without such a spectral
effect, exhibiting the enhancement of the growth rate. This originates from the coupling property of the new
zonal flow eigenmode equation system. We refer to this state as a coupled zonal flows eigenmode, which leads to
a spatial modulation of zonal flows affected by the turbulence structure.
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It is well recognized that zonal flows, which are non-
linearly generated from micro-scale turbulence, play an
important role in regulating turbulence and transport in
magnetically confined fusion plasmas [1, 2]. For under-
standing such a turbulence-zonal flow system, it is nec-
essary to elucidate the spatio-temporal structures of zonal
flows and turbulence and their mutual relation. The gen-
eration processes of zonal flows have been intensively
studied based on the modulational instability. For study-
ing such a modulation process, two approaches based on
the Hasegawa-Mima (HM) model, namely, the coherent
mode coupling (CMC) approach [3–5] and the wave ki-
netic (WK) approach [6–8], have been developed. In these
methods, zonal flows have been modeled by a monochro-
matic wave with a sinusoidal function. However, the gen-
eration of zonal flows is purely a nonlinear process, which
essentially involves complex coupling among spectral dis-
tributions of zonal flows and turbulence.

To address this problem, we present a model that
includes the effect of the spectrum of the radial wave
number of zonal flows and turbulence by means of two
monochromatic waves with a difference of δkx, which are
given by radial and poloidal wave numbers (kx0, ky) and
(kx1 ≡ kx0 + δkx, ky) for pump waves, and (kq0, 0) and
(kq1 ≡ kq0 + δkx, 0) for zonal flows. This is considered
to be the minimum model, which represents the qualita-
tively different aspects of zonal flow generation compared
with the monochromatic treatment. Then, six side-bands,
i.e., (kx j± ≡ kx0 + jδkx ± kq0, ky) with j = 0, 1, and 2, can be
produced through a nonlinear interaction. Therefore, the
present system consists of ten waves, and is equivalent to
that involving two sets of four-wave coupling loops with
a spectral shift δkx, i.e., Loop A: {(kx1, ky), (kq0, 0) and
(kx1+, ky)} and Loop B: {(kx0, ky), (kq1, 0) and (kx1+, ky)}.
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Although, this system is not a simple superposition of two
sets, a new cross coupling appears between these two sets
through the side-band with the wave numbers (kx1+, ky),
which links two pairs of modulation loops. This cross cou-
pling results in an interaction between the two loops, and
then influences the zonal flow instability. Following this
idea, we derive a dispersion relation of zonal flow instabil-
ity as follows.

Expanding each potential field φ(r, t) as φ(r, t) =
1
2

∑
k[φk(t) exp ik · r+ c.c.], the HM equation modeling the

electron temperature gradient (ETG) turbulence and zonal
flow system reads to

dφk

dt
+ iωkφk =

∑
k=k′+k′′

Λk
k′ , k′′φk′φk′′ , (1)

where ωk is the drift wave frequency (note that ωk = 0 for
zonal flow). The normalization in Eq. (1) is the same as
Ref. [4]. The matrix element Λk

k′ , k′′ is given by Λk
k′ , k′′ =

k′ × k′′ · ẑ(k′′2 − k′2)/[2(1+ k2)]. The pump waves are ex-
pressed as φ̃(p)(r, t) =

∑1
j=0 φkx j ,ky(t) exp i (kx jx+ kyy+ θ j)+

c.c. An arbitrarily small perturbation is chosen as a seed
of the zonal flows with two wave components φ̃(q)(r, t) =∑1

j=0 φkq j ,0(t) exp ikq jx + c.c. Corresponding side-bands are

φ̃(s±)
k (r, t) =

∑2
j=0 φkx j±,ky(t) exp i (kx j±x + kyy + θ j) + c.c.,

where θ j indicates initial phase factors. Then, we divide
all fields into a slowly varying envelope part and a rapidly
varying eikonal as φi(t) = Ai(t) exp(−iωit+ iθ j), which rep-
resent two zonal flows for i = (1, 1′), two pump waves for
i = (2, 2′), and two pairs of side-bands for i = (3, 3′, 3′′)
and (4, 4′, 4′′), respectively. Note that ωi represents real
frequencies. Assuming that the two pump waves, |A2|
and |A′2|, have larger amplitudes than that of other waves,
we assume these amplitude to be same and constant as
|A2| = |A′2|. We also assume that the real frequency of zonal
flow is small enough compared with drift frequency [5];
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therefore, ω1 = ω
′
1 = 0 is chosen. Then, we obtain the

following two equations for zonal flows in matrix form:

d2

dt2

(
A1

A′1

)
=

(
a1 b1

a2 b2

) (
A1

A′1

)
, (2)

where the matrix coefficients are given by a1 =

(Λ1
2∗ ,3Λ

3
1,2 + Λ

1
2,4Λ

4
1,2∗ + Λ

1
2′∗ ,3′′Λ

3′′
1′,2′ + Λ

1
2′,4′Λ

4′
1,2′∗)|A2|2,

a2 = (Λ1′
2∗,3′Λ

3′
1,2′ + Λ

1′
2′,4Λ

4
1,2∗)|A2|2, b1 = (Λ1

2′∗,3′Λ
3′
1′,2 +

Λ1
2,4Λ

4
1′,2′∗)|A2|2, and b2 = (Λ1′

2∗,3′Λ
3′
1′ ,2 + Λ

1′
2′,4Λ

4
1′ ,2′∗ +

Λ1′
2′ ,3′′Λ

3′′
1′ ,2′ + Λ

1′
2,4′′Λ

4′′
1′,2∗ )|A2|2. Note that the phase differ-

ence Δθ j ≡ |θ1 − θ0| does not appear in Eq. (2) explicitly;
therefore, there is no effect of the initial phases on the zonal
flow growth rate. Here, we find a solution in which the
two zonal flows and six side-bands have the same growth
(or damping) rate γq, which corresponds to an eigenmode
in which all eight waves couple each other. By setting
Ai(t) = A(0)

i (t) exp(γqt), which excludes two pump waves
for i = (2, 2′), Eq. (2) yields a fourth-order algebraic equa-
tion with respect to γq expressed as

γ4
q − (a1 + b2)γ2

q + (a1b2 − a2b1) = 0. (3)

First, Eq. (3) is solved and compared with the growth
rate based on the four-wave model, where waves with
i = (1′, 2′, 3′, 3′′, 4′, 4′′) in Eq. (2) are excluded. The spec-
tral difference δkx = 0.0125 is chosen. Since the gener-
ation of zonal flows depends on the pump amplitude, we
choose the same pump energy in both models for direct
comparison of the growth rates. Therefore, the amplitude
of each pump component in the present ten-wave model is
reduced by a factor 1/

√
2 to keep the total pump wave en-

ergy the same as that of the four-wave model. In Fig. 1 (a),
the growth rate of the zonal flow γq is plotted with respect
to the radial wave number of the pump wave kx0 for the two
models. It is found that the growth rate of zonal flow in the
ten-wave model γ(10)

q is larger compared with that in the
four-wave one γ(4)

q in a wide kx0 region. Next, we examine
the dependence of the growth rate on the spectral differ-
ence δkx. Here, we solved Eq. (3) from δkx = 0.1 down
to 10−4 as shown in Fig. 1 (b). It is seen that the growth

Fig. 1 Growth rate γq of zonal flow as a function of (a) the
wave number kx0 and (b) the difference between two ra-
dial wave numbers of turbulence dkx. Open circle (◦) at
δkx = 0 represents

√
3/2γ(4)

q � 0.637.

rate γq weakly depends on δkx, keeping an almost constant
value down to δkx = 10−4 at which γq = 0.645 is estimated
(marked by (∗)). Since the growth rate in the four-wave
model is γq � 0.52, Fig. 1 (b) suggests a difference (and/or
discontinuity) between two cases of around δkx = 0 with
and without the spectral nature of zonal flow.

In order to precisely identify the dynamics around
δkx = 0, we analyze the dispersion relation Eq. (2) in
the small δkx region. Expanding each coefficient with
respect to δkx in Eq. (2) and keeping the first order, we
obtain a1 = γ

(4)
q + C1(kx0, ky, kq0)δkx, a2 = γ

(4)
q /2 +

C2(kx0, ky, kq0)δkx, b1 = γ
(4)
q /2 + C3(kx0, ky, kq0) δkx, and

b2 = γ
(4)
q + C4(kx0, ky, kq0) δkx, where coefficients C1 to C4

are functions of (kx0, ky) and kq0 with no specific singulari-
ties. Then, the solution up to the first order with respect to
δkx of Eq. (3) yields

γq =
√

3/2γ(4)
q

[
1 + C(kx0, ky, kq0)δkx

]
, (4)

where C is a positive regular function of (kx0, ky) and kq.
Equation (2) is valid when δkx is not zero but finite (i.e.,
δkx > 0), since the two coupling pairs are assumed a priori
in the dispersion relation in the present ten-wave model.
However, it is found that Eq. (4) can be analytically con-
nected to δkx = 0 as found from Eq. (4); therefore, the dif-
ference (and/or discontinuity) exists between γ(10)

q and γ(4)
q

at small δkx by
√

3/2 as plotted in Fig. 1 (b), suggesting
that the present ten-wave model provides a qualitatively
different characteristic due to the spectral nature of zonal
flows. Note that if only monochromatic zonal flow is con-
sidered in the coupling system, there is no essential differ-
ence in the growth rate γq between the two cases, whether
or not the spectral nature of pump wave is considered.

In conclusion, we found that the zonal flow growth
rate is qualitatively different in cases with and without the
spectrum effect of zonal flows. This originates from the
coupling property of the new zonal flow eigenmode equa-
tion system, which leads to a discontinuity compared with
the four-wave model at small δkx limit. We refer to this
state as a coupled zonal flows eigenmode. This process
is similar in form to the toroidal eigenmode, where differ-
ent poloidal harmonics couple each other through toroidic-
ity, causing a ballooning mode. However, it is noted that
the present eigenmode is determined for a given turbulent
spectrum. Here, we have shown a simple case, where the
radial spectra of zonal flows and turbulence are modeled by
two monochromatic waves. However, to predict the zonal
flow growth rate quantitatively, a direct numerical simula-
tion considers precise spectral information of zonal flows
and turbulence including the phases is necessary. Mean-
while, Gaussian and/or wider turbulence and zonal flow
spectrum may cause more complex interactions, leading to
a spatially localized wave packet, which will be discussed
in a future publication.
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