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In order to estimate the electromagnetic force acting on vessel components during tokamak disruptions, an
accurate prediction of the plasma current decay time is necessary. We have verified a current decay model based
on a simple series circuit with a plasma resistance and an inductance. The circuit is employed for establishment of
a plasma current decay time database using disruptive discharges in a small tokamak HYBTOK-II. An increase
in the decay rate of the plasma current during the current quench phase was observed in experiments associated
with an increase in the plasma resistance. This experimental result is consistent with the prediction of the model.
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1. Introduction
The magnitude of damages to tokamak devices during

disruptions must be estimated accurately in order to design
tokamak fusion reactors. These disruptions are accompa-
nied by an intense heat load on the divertor during thermal
quench (TQ), and large electromagnetic (EM) forces on the
vacuum vessel and in-vessel components because of eddy
and halo currents induced during current quench (CQ). The
eddy and halo currents are induced by the time variation
of the plasma current and a vertical displacement event
(VDE) [1], respectively. The EM forces, which are gen-
erated by the interaction between these currents and mag-
netic fields, could be large enough to mechanically break
the in-vessel components [2]. In order to estimate the EM
force generated by the eddy current, an accurate prediction
of the plasma current decay time is crucial. In a recent
study, we used a current decay model based on a simple
series circuit of the plasma resistance Rp and inductance
Lp to analyze the current decay time τ where τmodel can
be described by Lp/Rp. The database for ITER (Interna-
tional Thermonuclear Experimental Reactor) [3] is estab-
lished by using the current decay time τ normalized by the
plasma cross-sectional area S . However, a few problems
have been encountered; the data of the normalized τ exhibit
large scattering among different tokamaks and operational
shots. Therefore, it is strongly recommended that the va-
lidity of the current decay model be experimentally eval-
uated. In addition, this model must demonstrate that the
normalized τmodel strongly depends on the plasma resistiv-
ity during CQ. In other words, it is important to accurately
evaluate the electron temperature and effective charge dur-
ing CQ. There have been only a few measurements of the

electron temperature during CQ in large and middle size
tokamaks as it is difficult to perform measurements in these
tokamaks because τ is very short, and the electron tem-
perature is too low for the conventional diagnostic system
in these devices to be measured during CQ. Electrostatic
probes can measure the electron temperature during CQ.
However, it is difficult to use the electrostatic probes in
very hot plasma because the probe tips get severely dam-
aged because of the enormous heat load during the disrup-
tions. Therefore, the electron temperature is calculated us-
ing a numerical model, which is based on a power balance
equation between joule heating and radiation loss because
of impurity gases [4, 5].

On the other hand, probe measurements in the plasma
can be performed at disruptive discharges in small toka-
maks. Current density profiles and mode structures of
MHD (Magnetohydrodynamics) instabilities at disruptive
discharges have been reported by the magnetic probe mea-
surement in the following devices: TOSCA [6, 7], LT-3
[8,9], TBR-1 [10] and TORTUS [11]. However, the current
decay time τ and electron temperature during CQ have not
been reported for small tokamaks.

In this paper, the time evolution of the electron tem-
perature during CQ is measured using a triple probe
inserted into the small tokamak HYBTOK-II [12] and
plasma resistivity is estimated by the classical Spitzer for-
mula [13]. Simultaneously, the plasma internal inductance
is estimated from the poloidal magnetic field, measured
with the internal magnetic probe. This work aims to com-
prehensively verify the current decay model for establish-
ment of the current decay time database using the obtained
experimental data.
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2. Model of Current Decay Time
If tokamak plasma is assumed to be represented by a

simple series circuit consisting of resistance Rp and induc-
tance Lp, loop voltage Vloop is expressed as

Vloop =
d
dt

(LpIp) + RpIp, (1)

where Ip is the plasma current. If Rp and Lp are constant
in time, and the absolute value of the right-hand side of
Eq. (1) is much larger than the absolute value of Vloop, the
temporal evolution of Ip can be expressed by the following
equation:

Ip = Ip0 exp(−t/τmodel), (2)

where τmodel = Lp/Rp is the time constant of Ip decay, and
Ip0 is the plasma current before CQ. Equation (2) is valid
when the current decay time is very short and plasma re-
sistance is sufficiently large. When the current decay time
can be approximated by τmodel = Lp/Rp, the normalized
current decay time τmodel/S can be expressed as

τmodel

S
=

Lp/2πR0

ηp
, (3)

where R0 is the plasma major radius, ηp is the plasma resis-
tivity, and ηp = RpS/2πR0. τmodel/S has little dependence
on the device size, because Lp is approximately propor-
tional to R0, and has a strong dependence on ηp, which is
primarily determined by the electron temperature Te and
effective charge Zeff in the classical Spitzer formula [13].
Thus, the database for ITER prediction is established in
terms of the normalized current decay time τ/S [3]. How-
ever, Rp and Lp generally change in time, and occasion-
ally the absolute values of the first and second terms in the
right-hand side of Eq. (1) have a similar order of magnitude
as Vloop. In this case, Eq. (3) cannot be valid. Therefore, to
verify the current decay model, it is necessary to measure
Vloop, Lp, and Rp in time during CQ experimentally.

3. Waveform of Disruptive Discharge
in HYBTOK-II Tokamak
HYBTOK-II is a small standard tokomak with a circu-

lar cross-section of limiter configuration. The major radius
R0 is 40 cm, the minor radius of vacuum vessel a, and the
limiter radius al are 12.8 and 11 cm, respectively [12]. Fig-
ure 1 shows a typical waveform of a disruptive discharge
in the HYBTOK-II. Zero in time corresponds to the initi-
ating time of CQ. Disruption was driven by ramping up Ip

to reduce the plasma surface safety factor qa (= aBt/RBθ),
where Bt and Bθ are the toroidal and poloidal magnetic
field strengths, respectively [14, 15]. The typical parame-
ters just before CQ are as follows: plasma minor radius
is approximately 9.5 ∼ 10.5 cm, qa ∼ 3, Ip = 10-11 kA,
and Bt ∼ 0.25 T. It is found that the waveform of CQ
consists of two phases of slow and fast current decays in

Fig. 1 Typical disruption waveform in HYBTOK-II (Bt ∼
0.25 T). Temporal evolutions of (a) plasma current Ip,
(b) plasma loop voltage Vloop, (c) horizontal position
of plasma center Δx, (d) poloidal magnetic field Bθ at
rprb = 4.8 cm and (e), (f) electron temperature Te and den-
sity ne at rprb = 5.5 cm. The negative value of the plasma
horizontal position corresponds to the high field side and
Δx = 0 is the center of the vacuum vessel.

the HYBTOK-II disruptions as shown in Fig. 1 (a). In this
paper, the current decay model is evaluated using a de-
cay rate of Ip during the slow decay phase, because the
plasma inductance and cross-sectional area can be experi-
mentally obtained from the poloidal magnetic fields inside
the plasma (Fig. 1 (d)) and the horizontal position of the
plasma center from the center of vacuum vessel (Fig. 1 (c)),
respectively. The electron temperature Te is measured by a
triple probe located at rprb = 5, 5.5, and 6 cm, and poloidal
magnetic field Bθ is measured by a magnetic probe at
rprb = 4.3, 4.8, and 5.3 cm, where rprb is the distance be-
tween the central position of the vacuum vessel and each
probe position. The probe and magnetic probe are inserted
vertically along the minor radius from the bottom of the
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vacuum vessel.
The time derivative of Ip, denoted by ΔIp/Δt, is de-

termined by linear fitting during the initial phase of the
slow decay, represented by a dashed line in Fig. 1 (a); here,
ΔIp/Δt becomes −3.1 kA/ms. The plasma inductance is
evaluated from time-averaged values of Bθ and Ip over the
hatched region in Fig. 1 on the basis of Ampere’s Law with
an assumption of the following current density profile [16]:

j(r) = j0{1 − (r/ap)2}ν. (4)

Substituting Eq. (4) into the differential form of Ampere’s
law, μ0 j = (1/r)d(rBθ)/dr, Bθ can be expressed by the
following equation:

Bθ(r) =
μ0 j0a2

p

2(ν + 1)

1 − {1 − (r/ap)2}ν+1

r
, (5)

where ap = al + Δx. Δx is the displacement of the cen-
ter of the plasma column shown in Fig. 1 (c), and ap is a
plasma minor radius. The value of Bθ(ap) can be calcu-
lated from the integral form of Ampere’s Law, Bθ(ap) =
μ0Ip/2πap, using the measured value of Ip. Peaking factor
ν in Eq. (5) can be determined by Bθ(ap) and Bθ(rp), where

rp =
√
Δx2 + r2

prb. Therefore, the plasma inductance Lp

can be calculated from

li =
Bθ(r)2

Bθ(ap)2
=

2
∫ ap

0
Bθ(r)2rdr

a2
pBθ(ap)2

, (6)

Lp = μ0R0

(
li
2
+ ln

8R0

ap
− 2

)
. (7)

Time-averaged Ip and Bθ over the hatched region in Fig. 1
give 〈ν〉 = 1.56, 〈li〉 = 1.09, and 〈Lp〉 = 1.0μH, where
〈 〉 indicates that the values are time-averaged. Therefore,
|〈Lp〉ΔIp/Δt| can be estimated to be 3.1 V, which is in the
same order of magnitude as the time-averaged Vloop of
11.7 V. It is found that Eqs. (2) and (3) cannot be used dur-
ing the slow decay phase in Fig. 1 (a), therefore, we need
to verify Eq. (1) directly.

4. Verification of Current Decay
Model Based on a Simple Series
Circuit

We have analyzed 115 disruptive shots. Figure 2
shows a histogram of 〈Te〉 taken among these 115 disrup-
tive shots. 〈Te〉 indicates the time-averaged value of Te

during the slow decay phase. Te is measured at different
radial positions, rprb = 5, 5.5, and 6 cm. The 〈Te〉 has little
dependence on the radial position because the radial pro-
file of Te is flat. However, a large variation of 〈Te〉 among
the disruptive shots appears even at the same radial posi-
tion. The large variation could be caused by a difference
in the particle recycling rate because of inward shift of the
plasma column. We can verify Eq. (1) at range of 〈Te〉 from
about 30 to 50 eV.

Fig. 2 Histogram of time-averaged electron temperature 〈Te〉
during the slow decay phase.

In order to evaluate the validity of Eq. (1), we need to
estimate the plasma resistivity in the hatched region during
slow decay phase of CQ. The plasma resistivity can be
calculated using the classical Spitzer formula [13],

ηp = 1.65 × 10−9ZeffT−3/2
e lnΛ, Te in keV (8)

where Zeff and lnΛ are the effective charge and Coulomb
logarithm, respectively. There are two methods to cal-
culate the time-averaged plasma resistivity 〈ηp〉 over the
hatched region. A simple method is to calculate 〈ηp〉 by
substituting 〈Te〉 into Eq. (8), referred to as ηp(〈Te〉). In
another method, after calculating the time evolution of
ηp(t) by substituting Te in Eq. (8) by the Te value shown
in Fig. 1 (e), 〈ηp〉 is calculated by averaging ηp(t) over the
hatched region in Fig. 1, and 〈ηp〉 is denoted by 〈ηp(Te)〉.
In general, 〈ηp(Te)〉 becomes larger than ηp(〈Te〉) because
of the nonlinear dependence of ηp ∝ T−3/2

e . Figure 3 shows
the comparison between ηp(〈Te〉) and 〈ηp(Te)〉 at Zeff = 1.
It is found that 〈ηp(Te)〉, calculated by the temporal evo-
lution of Te, becomes larger than ηp(〈Te〉) calculated by
time-averaged value of Te. This indicates that the measure-
ment of electron temperature with good time resolution is
important for estimating the precise plasma resistance to
evaluate the current decay model. We will use the values
of 〈ηp(Te)〉 hereafter.

If Rp and Lp are constant, using Eq. (1), the rate of Ip

decay can be expressed as

dIp

dt
=
−IpRp + Vloop

Lp
. (9)

Figure 4 shows the time-averaged values of plasma induc-
tance, loop voltage, and plasma current as functions of the
time-averaged value of T 3/2

e . Because 〈T 3/2
e 〉 varies from

approximately 100 to 300 among the shots, it seems that
〈ηp〉 varies by approximately three times of that evaluated
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Fig. 3 Comparison between 〈ηp(Te)〉 and ηp(〈Te〉). 〈ηp(Te)〉 is
calculated by ηp(t) averaging over the hatched region in
Fig. 1. ηp(〈Te〉) is calculated by time-averaged 〈Te〉 over
the hatched region in Fig. 1.

Fig. 4 Time-averaged values of (a) plasma inductance Lp, (b)
loop voltage Vloop, and (c) plasma current Ip during the
slow decay phase, as a function of the time-averaged
value of T 3/2

e .

by Eq. (8). Both 〈Lp〉 and 〈Ip〉 slightly increase with 〈T 3/2
e 〉.

On the other hand, 〈Vloop〉 decreases with 〈T 3/2
e 〉; how-

ever, although 〈T 3/2
e 〉 varies by approximately three times,

〈Vloop〉 changes only twice. We speculate that the variation
of Ip decay rate is primarily determined by the change in
plasma resistance among the shots from Eqs. (8) and (9).

Fig. 5 Decay rate of the plasma current decay Ip during the slow
decay phase as a function of 〈T 3/2

e 〉.

Fig. 6 Plasma resistance 〈Rp〉∗ calculated from a circuit equation
using experimental values ofΔIp/Δt, 〈Lp〉, 〈Ip〉 and 〈Vloop〉
versus plasma resistance 〈Rp〉 calculated by the Spitzer
formula with the assumption of Zeff = 1.

Figure 5 shows the rate of Ip decay ΔIp/Δt as a func-
tion of 〈T 3/2

e 〉. It is found that ΔIp/Δt increases with an
increase in 〈T 3/2

e 〉 associated with the change in plasma re-
sistance. This experimental result is in qualitative agree-
ment with the prediction from Eq. (9); however it is not
quantitatively consistent. In order to make a quantitative
comparison between the experimental results and Eq. (9),
we compare the plasma resistances evaluated by two cal-
culation methods. One, which is denoted by 〈Rp〉, is calcu-
lated from Eq. (8) using experimental values of 〈T 3/2

e 〉 and
the assumption of Zeff = 1. The other, which is denoted by
〈Rp〉∗, is calculated from Eq. (9) using experimental values
of ΔIp/Δt, 〈Lp〉, 〈Ip〉, and 〈Vloop〉. Figure 6 shows a com-
parison between 〈Rp〉 and 〈Rp〉∗. It is found that 〈Rp〉∗ in-
creases with 〈Rp〉; however, 〈Rp〉∗ is much larger than 〈Rp〉,
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Fig. 7 Ratio between plasma resistance 〈Rp〉 calculated by the
Spitzer formula with Zeff = 1, and 〈Rp〉∗ calculated by
a circuit equation using experimental values of ΔIp/Δt,
〈Lp〉, ΔLp/Δt, 〈Ip〉, and 〈Vloop〉 as a function of the time-
averaged electron temperature 〈Te〉.

even if the term ΔLp/Δt is considered in the plasma resis-
tance calculation using a circuit equation. Figure 7 shows
the ratios of 〈Rp〉∗ to 〈Rp〉 as a function of 〈Te〉. The ratio
of 〈Rp〉∗ to 〈Rp〉 increases monotonically with 〈Te〉. This
result could suggest that the effective charge Zeff increases
with 〈Te〉 in the experiments, although Zeff is assumed to be
unity in our calculation. Unfortunately, there are no experi-
mental data for Zeff at this moment, but the discrepancy be-
tween 〈Rp〉∗ and 〈Rp〉 will be discussed in the next section.

5. Discussion
In our experiment, the working gas is hydrogen. The

limiter and vacuum vessel are made of molybdenum and
stainless steel, respectively. If the electron temperature
dependence of the ratio of 〈Rp〉∗ to 〈Rp〉 in Fig. 7 is de-
termined by the variation of Zeff , then Zeff should vary
from 2 to 4.5 in the range of electron temperature from
28 to 42 eV. With 1% iron impurity in the plasma, Zeff

could be varied from 1.25 to 1.33 at an electron tempera-
ture from 28 to 42 eV. In this analysis, we have used the
ionization states of iron calculated by Arnaud and Rohten-
flug [17]. In Ref. [17], the main ionization states of iron
are the fifth and sixth charged states at Te = 28 eV, and
are the sixth and seventh charged states at Te = 42 eV.
Specific numerical values are as follows: nFe+3 : nFe+4 :
nFe+5 : nFe+6 : nFe+7 : nFe+8 = 0.001 : 0.057 : 0.43 :
0.38 : 0.12 : 0.004 at Te = 28 eV and nFe+4 : nFe+5 :
nFe+6 : nFe+7 : nFe+8 : nFe+9 = 0.008 : 0.13 : 0.42 : 0.35 :
0.091 : 0.001 at Te = 42 eV. The assumption of 1% iron
impurity in plasma is insufficient to explain the discrep-
ancy. However, we should measure the value of Zeff ex-
perimentally in the future in order to form a more compre-
hensive discussion. Another possibility to explain the dis-

Fig. 8 Normalized amplitude of the spontaneous radial mag-
netic field fluctuation as a function of 〈Rp〉∗/〈Rp〉. Bθa
is the poloidal magnetic field at the plasma surface.

crepancy is the anomalous resistivity because of magnetic
fluctuations associated with magnetic field line reconnec-
tion [18]. In Ref. [18], detailed experiments on this anoma-
lous resistivity were performed by Stenzel and Gekelman
within a comparatively large facility (1 m in diameter, 2 m
long). A rarefied plasma was produced at plasma density
of 10l2 cm−3 with an electron temperature of approximately
10 eV. They reported the increase of the plasma resistivity
by two orders of magnitude because of anomalous electron
scattering. Figure 8 shows the normalized amplitude of
magnetic fluctuation of the internal radial magnetic field Br

as a function of the ratio of 〈Rp〉∗ and 〈Rp〉. It is found that
the amplitude of internal magnetic fluctuation increases
with this ratio. This could suggest that the plasma resis-
itivity may be influenced by anomalous resistivity induced
by magnetic fluctuations associated with MHD instability.

6. Summary
We have verified the current decay model to establish

a database of the current decay time using the slow decay
phase of HYBTOK-II disruptive discharges. It is experi-
mentally confirmed that the decay rate of the plasma cur-
rent during the current quench becomes quicker with an
increase in the plasma resistance, which is consistent with
the current decay model. The discrepancy in plasma resis-
tivities, estimated from the current decay model and calcu-
lated by the classical Spitzer formula, is discussed based
on the effective charge in plasma and anomalous resistivity
associated with magnetic perturbation. In order to evaluate
the model more accurately in the future, direct measure-
ment of the effective charge in the plasma is necessary.
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