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本稿では，Tsallisエントロピーの起源から始め，Tsallisエントロピーと Rényiエントロピーの直接的関係，
Tsallisエントロピーの背景にある基本的な非線形微分方程式の存在，そして，その非線形微分方程式から，マル
チフラクタルも含め，いかに，Tsallis統計の主要な結果が導かれるのかを述べる．
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2.1 Tsallisエントロピーの起源
今日，非加法的統計力学の代表例として，Tsallis統計が

知られている．これは，1988年に，Boltzmann-Gibbs統計
の一般化のために，物理学者 Constantino Tsallisが導入し
たエントロピーが起源である [1]．情報数理が専門である
筆者から言えば，Boltzmann-Gibbs統計の最大の特徴は，
系の独立性である．それゆえ，その適用範囲は，独立性か
らの僅かなずれを許容する範囲内に限定される．つまり，
対象とする物理系の相互作用は短距離である．数学的に
言えば，Boltzmann-Gibbs統計は，指数関数族による統計
力学である．これに対して，複雑系などで広く知られる，
異常統計，べき乗則，スケールフリー，ロングテールなど
の特徴は，長距離相関などが特徴であり，べき関数族の統
計力学である．Tsallisは，これらの特徴を捉えられるよう
に，マルチフラクタルに着目して，一般化エントロピーを
提案した [1]．

Tsallis統計の起源となった論文 [1]の 1ページ目に，マ
ルチフラクタルを背景に Tsallisエントロピー STsallis

q を提
案することが書かれている．しかし，そこには，導出過程
の記載はない．

STsallis
q (p1, · · · , pn) :=

1−
n∑

i=1

pqi

q − 1
(1)

ここで，q ∈ R, q �= 1で，q → 1のとき，Shannonエント
ロピーに一致する．

2009 年に，筆者が，Tsallis らを招待した国際ワーク
ショップを京都で開催した際，京都に到着された日の昼食
時に，他の招待講演者も交えて，直接，ご本人に，Tsallis
エントロピーの発見の経緯を尋ねた．ご自身曰く，ある会
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議で，研究者が議論しているのを少し遠目で見ていたと
き，ホワイトボードの数式の多くに，pqi あるいは

∑
i p

q
i が

書かれていることに気づき，これをエントロピーの式に使
えないかと思ったことがきっかけだったとのことである．
実際，そのときの導出は，ご自身によって，[2] に書かれ
ており，直観的な導出であったことがわかる．Tsallisエン
トロピーとほぼ同等の式は，情報理論の世界では，すでに
導かれていたが [3, 4]，Boltzmann-Gibbs統計の一般化の
ために，Jaynesの最大エントロピー原理の枠組み [5]で，
Tsallisエントロピーの最大化を用いたのは，筆者の知る限
り，1988年の Tsallisの論文 [1]が初めてであったと思う．

2.2 Rényiエントロピーとの関係
マルチフラクタルを背景に，Tsallisエントロピーが生ま
れたのであれば，当時，マルチフラクタルの分野で，すで
によく知られていた Rényiエントロピー [6]との関係を問
うのは自然であろう．先の京都での会話で，当時，Rényiエ
ントロピーがすでに知られていたのではと尋ねたところ，
皆にそう言われたそうだが，ご本人は査読者の指摘で，初
めて知ったとのことである．
実は，Rényiエントロピーと Tsallisエントロピーの間に
は，次のような簡潔な関係がある [7]．

exp
(
SRényi
q (pi)

)
=expq

(
STsallis
q (pi)

)
(2)

=exp1/q

(
STsallis
1/q (Pi)

)
�ε−Dq (3)

ここで，SRényi
q は，Rényiエントロピー：

SRényi
q

(
p1, · · · , pn(ε)

)
:=

ln
n(ε)∑
i=1

pqi

1− q
, (4)
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expq は q-指数関数と呼ばれ，1 + (1− q)x > 0のときに，

expq (x) := (1 + (1− q)x)
1

1−q (5)

で定義される．なお，この逆関数の q-対数関数 lnqは，x > 0

に対して，

lnq x :=
x1−q − 1

1− q
(6)

で定義される．q-指数関数も q-対数関数も，q → 1のとき，
それぞれ，通常の指数関数と対数関数に一致する．また，
(3)における {Pi}は，{pi}のエスコート分布と呼ばれ，次
で定義される．

Pi :=
pqi∑
j

pqj
(7)

(3)のDq は，与えられた集合 A ⊂ Rnの一般化次元 [8–10]
であり，(4) の n (ε) は，対象としている集合 A を直径
d (V ) = εの V ⊂ Rn で被覆したときの数である．このと
き，(2),(3)における Tsallisエントロピーでは，nを n (ε)

で置き換えている．(3)における �は，εが十分に小さい
時に，ほぼ等しくなるという意味である．
式 (2),(3) の関係は，有名なボルツマンの関係式 S =

kB lnW を変形したアインシュタインの関係式 [11]：

exp (S) = W (8)

の拡張になっている（簡単のため，ボルツマン定数 kB = 1

とおいた）．つまり，Rényiエントロピーと Tsallisエント
ロピーの違いは，同じ微視的な状態数Wq := ε−Dq に対し
て，とる対数の違いだけである．

SRényi
q = lnWq, STsallis

q = lnq Wq (9)

次元という意味（この場合，一般化次元Dq）では，状態数
の対数 lnをとるのは，自然であろう．また，Rényiエント
ロピーは，通常の対数 lnをとっているがゆえに，加法的で
ある．対して，Tsallisエントロピーは，q-対数 lnq をとっ
ているがゆえに，非加法的である．しかも．Tsallisエント
ロピーは，数理的な意味で，極めて自然なエントロピーで
ある．そのことを次で述べる．

2.3 基本的な非線形微分方程式から導かれる Tsallis
エントロピー

Tsallisエントロピーが，導出過程なく与えられ，その最
大化で得られる q-指数関数を中心に，Boltzmann-Gibbs統
計の一般化という理論展開（特に，Legendre変換構造 [12]）
と，q-指数関数による観測データの説明から，多くの論文
が生まれてきた．しかし，同時に，多くの研究者が Tsallis
エントロピーを懐疑的に思うのは致し方なかった [13]．な
ぜなら，そもそも，Tsallisエントロピーの導出の背景が直
観的で，なぜ，Tsallisエントロピーを使うのかという素朴
な疑問に対して，Tsallis 統計が，Legendre 変換構造 [12]
などの望ましい性質を満たしているなど間接的な解答はで
きても，当時，誰も直接的な解答を持ち合わせていなかっ

たからである．
筆者も，当初，なぜ．このエントロピーを使うのか懐疑
的であったが，本稿で簡潔に述べるように，数学的に疑い
ようのない理論的背景が存在することを見つけた．結論
から書けば，Tsallis 統計とは，最も簡潔な非線形微分方
程式：

dy

dx
= yq (10)

の数理である．つまり，この非線形微分方程式 (10)から，
Tsallis統計の数々の理論的結果が自然に導かれる．
非線形微分方程式 (10)は，変数分離形の非線形微分方

程式なので，解析的に解くことができる．ただし，初期値
は，(x0, y0) ∈ R2, y0 > 0を満たすものとする．(10)を，通
常の指数関数の一般化を特徴づけする微分方程式として解
くと，

y

expq (C)
= expq

(
x(

expq (C)
)1−q

)
(11)

を得る．ここで，C は，1 + (1− q)C > 0を満たす積分定
数で，初期条件で決まり，C = lnq y0 − x0 である．この
導出より，以後，q-指数関数 expq と q-対数関数 lnq が中心
的な役割を演じる．なお，出発点となる非線形微分方程式
(10)の解が q-指数関数であることを見つけたのは，Tsallis
自身である [14, 15]．しかし，そこでは，初期条件として，
(x0, y0) = (0, 1)を採用している．つまり，C = 0である．
このとき，q の値に関係なく expq (C) = 1 であり，非線
形微分方程式 (10)が本来持っているスケーリングが見え
ない．
通常の指数関数の基本的な法則として，指数法則が知
られているように，q-指数関数 expq に対しても，同様の
指数法則が満たされるように新しい演算 q-積 ⊗q を導入
する [16,17]．

expq (x)⊗q expq (y) = expq (x+ y) (12)

あるいは，

lnq (x⊗q y) = lnq x+ lnq y. (13)

q-指数関数 expq の定義が (5) でわかっているので，q-積
⊗q の定義を具体的に書き下せるが，省略する．
ここで，q-積の物理的な意味を与えておく [18]．(12)

の右辺の x + y にあるように，x と y は，同じスケール
（物差し）上の値なので，x + y という和の演算が可能と
いう当然のことに着目する．実際，通常の積を用いて，
expq (x+ y) = expq (x) expq

(
y

1+(1−q)x

)
と書けるが，xと

y
1+(1−q)x は，もはや同じスケール（物差し）上の値ではな
い．xと yそれぞれに，エネルギーなどの物理的な単位を
考えれば，xはエネルギーの単位であり， y

1+(1−q)x は，エ
ネルギーの比なので単位を持たない．つまり，expq (x+ y)

を，同じスケール（物差し）上の値に分割するのが，q-積
である．よって，非線形微分方程式 (10)で支配される物
理系を各エネルギーごとに q-積で分割する場合の数を考え
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ることができる．その基本となるのは，次の有名な関係で
ある．

ln

(
n

n1 · · · nk

)
� nS1

(n1

n
, · · · , nk

n

)
. (14)

(
n

n1 · · · nk

)
は多項係数，n, n1, · · · , nk ∈ N は，

n =
∑k

i=1 ni を満たす自然数，� はスターリングの近
似，S1 は，Shannon エントロピーを表す．この定式化
と同様に，q-積 ⊗q とその逆演算である q-比 �q（すな
わち，expq (x) �q expq (y) = expq (x− y) , lnq (x�q y) =

lnq x− lnq y）を用いて q-多項係数
(

n

n1 · · · nk

)

q

を

定義する．さらに，lnq n!q :=
∑n

i=1 lnq iに対する q-スター
リングの公式 (q �= 2のとき)は，次のように求まる．

lnq (n!q) �
n

2− q
lnq n− n

2− q
(15)

q → 1のとき，通常のスターリングの公式に一致する．(14)
と同様に，この q-スターリングの公式を q-多項係数に適用
すると，次を得る (0 < q < 2のとき) [19]．

lnq

(
n

n1 · · · nk

)

q

� n2−q

2− q
·STsallis

2−q

(n1

n
, · · · , nk

n

)
.

(16)

q = 2 のとき，lnq n!q に対する q-スターリングの公式は
lnq n!q � n− lnで，q-多項係数に適用すると，(16)の右辺
は，−S0 (n) +

∑k
i=1 S0 (ni)，S0 (n) := lnnとなる．なお，

最近，(16)の結果について，解析接続を用いた，より精確
な式が報告されている [20]．
以上より，非線形微分方程式 (10)から，q-指数関数 expq

と q-対数関数 lnq を得，これらの数理から，非線形微分方
程式 (10)に対応するエントロピーとして，Tsallisエント
ロピーが一意に得られた．Rényiエントロピーなど，最大
化して q-指数関数 expq が得られる一般化エントロピーが
あるが，q-指数関数 expq を特徴づける非線形微分方程式
(10)から出発すると，対応するエントロピーは，Rényiエ
ントロピーなど他の一般化エントロピーではなく，Tsallis
エントロピーであることがわかる．しかも，後に述べる加
法的双対性 q ↔ 2− qが自然に現れている．

2.4 熱力学的関係
Jaynesが最大エントロピー原理の枠組みで，Boltzmann-

Gibbs統計を再構築したとき [5]と同じように，Tsallisは，
提案したエントロピー Sq を最大化し，Boltzmann-Gibbs
統計を一般化した．しかし，エントロピーの起源は，(14)
あるいは (16)のような多項係数で表される場合の数であ
る．つまり，与えられた条件のもとで，どのような配分
(n1, · · · , nk)が支配的なのか，つまり，平衡状態は何かを問
題にしている．これは，歴史的にも，Wallisによる Jaynes
のアプローチの裏付けがある（ [21] の 11.4 節参照）．た
だ，1988年当時には，(16)の関係は，まだ発見されていな

かった．
(16)の関係に従えば，条件

∑k
i=1 pi = 1,

∑k
i=1 εipi = U1

の下で，S2−q を最大化する．このとき，Φ1 (pi, α, β) :=

S2−q −α
(∑k

i=1 pi − 1
)
−β

(∑k
i=1 pi (εi − U1)

)
の極値問

題を解くことになり，次の熱力学的関係が得られる [22,23]．

∂S2−q

∂U1
= β (17)

一方，期待値に関する変遷を経て，条件
∑k

i=1 pi =

1,
∑k

i=1 εiPi = Uq の下で，Sq の最大化が最もよく知ら
れている．ここで，{Pi}は，{pi}のエスコート分布 (7)で
ある．このとき，Φq (pi, α, β) := Sq − α

(∑k
i=1 pi − 1

)
−

β
(∑k

i=1 Pi (εi − Uq)
)
の極値問題を解くことになり，次

の熱力学的関係が得られる [12]．

∂Sq

∂Uq
= β (18)

(17)，(18)からわかるように，∂S2−q

∂U1
も ∂Sq

∂Uq
もそれぞれ

の未定定数 β と一致し，熱力学的関係 ∂S1

∂U1
= β =

1

T
（T

は温度）の自然な拡張になっていることがわかる．
ここで，少し注意が必要である．S2−q も Sq も，上の最

大化で得られる最大エントロピー分布（Tsallis統計の文脈
では，q-カノニカル分布ともいう）は，

p∗i =
expq (−βq (εi − U))

Zq
(19)

と求めることができるが，βq が少し異なる．（いずれの場
合も，q → 1のとき，βq → β である．）

βq =




β

1− α+ qα
S2−qを最大化したとき

qβ

q + (1 + α) (1− q)
Sqを最大化したとき

(20)

ここで，αは，
∑k

i=1 pi = 1に関する未定定数である．導
出の詳細などは，[24]を参照．

2.5 q-Gauss分布
論文 [16, 17]で，q-積が発表された時，筆者が最初に q-

積を応用したのは，(16)ではなく，Gaussの誤差法則の一
般化であった [25]．なぜなら，q-積は独立性の拡張とも考
えられ，量子確率論の世界で，複数の独立性が存在し，そ
れぞれに付随する中心極限定理が重要な話題になっていた
からである [26,27]．
よく知られている Gauss の誤差法則は，独立に観測さ
れた観測値 x1, · · · , xn ∈ Rに対して，尤度関数 L1 (θ) :=

f (θ − x1) · · · f (θ − xn)が算術平均 θ∗ := 1
n

∑n
i=1 xi で最

大となるとき，つまり，このときが最も尤もらしいとき，誤
差が従う分布 f（確率密度関数）として Gauss分布が得ら
れる．正規分布は，Gaussが天体の観測において，誤差に着
目して最初に発見したので，Gauss分布とも呼ばれる．当
時の Gauss の導出を現在の統計の言葉で書き直した方法
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が，尤度関数による導出である．この一般化として，q-積を
用いて，q-尤度関数 Lq (θ) := f (θ − x1)⊗q · · ·⊗q f (θ − xn)

を定め，同様の手順をとると，次の q-Gauss 分布が得ら
れる．

f (e) =
expq

(
−bqe

2
)

∫
expq (−bqe2) de

(21)

ただし，Lq (θ)の θ = θ∗ における最大性より，bq > 0. こ
の q-Gauss分布は，確率とエスコート分布 (7)による分散
一定の条件の下で，Tsallisエントロピー (1)の最大化によ
り，既に求められていた [28,29]．
誤差法則で求めた (21) に，エスコート分布 (7) による

分散 (σ2)一定の条件を課すと，bq = 1/(3− q)σ2 と求ま
る（図 1 では σ2 = 1．）．q-Gauss 分布の典型例として，
q = 1のときは Gauss分布，q = 2のときは Cauchy分布，
q = 1 + 2

n+1 のときは自由度 nの t-分布がある．
これらの結果からわかるように，誤差法則の一般化によ
る q-Gauss分布は，Tsallisエントロピー (1)の最大化によ
る分布と一致する．しかも，誤差法則の一般化による方法
では，エントロピーもエスコート分布も不要で，非線形微
分方程式 (10)だけで導かれる．これらの結果より，q-積の
有効性が明らかであろう．

2.6 Tsallis統計の 4つの数理
非線形微分方程式 (10)を解いて，q-対数関数，q-指数関

数，q-積，q-スターリングの公式，q-多項係数の順番に定
式化し，q-多項係数と Tsallisエントロピーの 1対 1の関係
(16)を得た．(16)のように，q と 2 − q を入れ替えても成
り立つので，そのような性質は，加法的双対性 q ↔ 2 − q

と呼ばれる．(3)からわかるように，乗法的双対性 q ↔ 1/q

も知られていた．そこで，この乗法的双対性も表現できる
ように (16)を一般化したところ，その副産物として，そ
れ以前に理論的に知られていた q とマルチフラクタルと
の関係（著者は，これをマルチフラクタルトリプレットと
呼んでいる），ならびに，Tsallisが予想として発表してい
た q-トリプレット [15] も解析的に得られる [7]．つまり，
Tsallis統計力学における代表的な 4つの数理構造（加法的
双対性，乗法的双対性，マルチフラクタルトリプレット，

q-トリプレット）は従来は別々に扱われてきたが，これら
は (16)の一般化により，たった１つの式 (23)に統合でき，
これら 4つの数理構造は，その特別な場合であることがわ
かった [7]．
ここでは，その結果のみを簡潔に紹介しておく．乗法
的双対性が現れるのは，(3)からわかるように，エスコー
ト分布 (7)が現れるときであることに注目する．そこで，
(15)(16)の結果において，各 nを nν に拡張する（ただし，
ν �= 0）．このとき，lnq n!q :=

∑n
i=1 lnq i の拡張として，

lnµ n!(µ,ν) :=
∑n

i=1 lnµ iν に対する q-スターリングの公式
（ν (1− µ) + 1 �= 0のとき）：

lnµ n!(µ,ν) �
n lnµ nν − νn

ν (1− µ) + 1
(22)

が 計 算 で き る． こ れ を (µ, ν)-多 項 係 数(
n

n1 · · · nk

)

(µ,ν)

に適用すると，次の関係が

得られる．

ν (1− µ) + 1 = q (> 0) (23)

のとき，

1

ν
lnµ

(
n

n1 · · · nk

)

(µ,ν)

� nq

q
·Sq

(n1

n
, · · · , nk

n

)
.

(24)

なお，q = 0 のときは，加法的双対性により (16) におけ
る q = 2のときと同じ結果になる．また，q = 1のとき，
(23)と ν �= 0より µ = 1となり，（14）に帰着することが
わかる．
先に述べた 4つの数理構造は，ν の設定によって，次の

ように再現できる．
(i) ν = 1のとき：（23）より µ = 2− qとなり，(16)が得
られる．つまり，加法的双対性 q ↔ 2− qの表現である．

(ii) ν = q のとき：（23）より µ = 1/q となり，(µ, ν) =

(1/q, q)．このとき，(24)は，乗法的双対性 q ↔ 1/q を表
す．つまり，qと 1/qを入れ替えても (24)が成り立つ．

(iii) ν = 2 − q のとき：（23）より µ = (3− 2q) / (2− q)

となり，(µ, ν, q) = ((3− 2q) / (2− q) , 2− q, q)．この結果
に先立ち，Tsallisは qには 3種類 qsen, qrel, qstatがあり，こ
の 3つ組を q-トリプレットと呼んだ [15]．
qsen の sen は sensitivity を表し，リアプノフ指数 λ1

の特徴付けである dξ/dt = λ1ξ を先の (10) と同様に

(Sensivity)

(Relaxation) (Stationary state)緩和

初期値鋭敏性

定常状態

図 2 q-トリプレット (qrel +
1

qsen
= qstat +

1

qrel
= 2)
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が，尤度関数による導出である．この一般化として，q-積を
用いて，q-尤度関数 Lq (θ) := f (θ − x1)⊗q · · ·⊗q f (θ − xn)

を定め，同様の手順をとると，次の q-Gauss 分布が得ら
れる．

f (e) =
expq

(
−bqe

2
)

∫
expq (−bqe2) de

(21)

ただし，Lq (θ)の θ = θ∗ における最大性より，bq > 0. こ
の q-Gauss分布は，確率とエスコート分布 (7)による分散
一定の条件の下で，Tsallisエントロピー (1)の最大化によ
り，既に求められていた [28,29]．
誤差法則で求めた (21) に，エスコート分布 (7) による

分散 (σ2)一定の条件を課すと，bq = 1/(3− q)σ2 と求ま
る（図 1 では σ2 = 1．）．q-Gauss 分布の典型例として，
q = 1のときは Gauss分布，q = 2のときは Cauchy分布，
q = 1 + 2

n+1 のときは自由度 nの t-分布がある．
これらの結果からわかるように，誤差法則の一般化によ
る q-Gauss分布は，Tsallisエントロピー (1)の最大化によ
る分布と一致する．しかも，誤差法則の一般化による方法
では，エントロピーもエスコート分布も不要で，非線形微
分方程式 (10)だけで導かれる．これらの結果より，q-積の
有効性が明らかであろう．

2.6 Tsallis統計の 4つの数理
非線形微分方程式 (10)を解いて，q-対数関数，q-指数関

数，q-積，q-スターリングの公式，q-多項係数の順番に定
式化し，q-多項係数と Tsallisエントロピーの 1対 1の関係
(16)を得た．(16)のように，q と 2 − q を入れ替えても成
り立つので，そのような性質は，加法的双対性 q ↔ 2 − q

と呼ばれる．(3)からわかるように，乗法的双対性 q ↔ 1/q

も知られていた．そこで，この乗法的双対性も表現できる
ように (16)を一般化したところ，その副産物として，そ
れ以前に理論的に知られていた q とマルチフラクタルと
の関係（著者は，これをマルチフラクタルトリプレットと
呼んでいる），ならびに，Tsallisが予想として発表してい
た q-トリプレット [15] も解析的に得られる [7]．つまり，
Tsallis統計力学における代表的な 4つの数理構造（加法的
双対性，乗法的双対性，マルチフラクタルトリプレット，

q-トリプレット）は従来は別々に扱われてきたが，これら
は (16)の一般化により，たった１つの式 (23)に統合でき，
これら 4つの数理構造は，その特別な場合であることがわ
かった [7]．
ここでは，その結果のみを簡潔に紹介しておく．乗法
的双対性が現れるのは，(3)からわかるように，エスコー
ト分布 (7)が現れるときであることに注目する．そこで，
(15)(16)の結果において，各 nを nν に拡張する（ただし，
ν �= 0）．このとき，lnq n!q :=

∑n
i=1 lnq i の拡張として，

lnµ n!(µ,ν) :=
∑n

i=1 lnµ iν に対する q-スターリングの公式
（ν (1− µ) + 1 �= 0のとき）：

lnµ n!(µ,ν) �
n lnµ nν − νn

ν (1− µ) + 1
(22)

が 計 算 で き る． こ れ を (µ, ν)-多 項 係 数(
n

n1 · · · nk

)

(µ,ν)

に適用すると，次の関係が

得られる．

ν (1− µ) + 1 = q (> 0) (23)

のとき，

1

ν
lnµ

(
n

n1 · · · nk

)

(µ,ν)

� nq

q
·Sq

(n1

n
, · · · , nk

n

)
.

(24)

なお，q = 0 のときは，加法的双対性により (16) におけ
る q = 2のときと同じ結果になる．また，q = 1のとき，
(23)と ν �= 0より µ = 1となり，（14）に帰着することが
わかる．
先に述べた 4つの数理構造は，ν の設定によって，次の

ように再現できる．
(i) ν = 1のとき：（23）より µ = 2− qとなり，(16)が得
られる．つまり，加法的双対性 q ↔ 2− qの表現である．

(ii) ν = q のとき：（23）より µ = 1/q となり，(µ, ν) =

(1/q, q)．このとき，(24)は，乗法的双対性 q ↔ 1/q を表
す．つまり，qと 1/qを入れ替えても (24)が成り立つ．

(iii) ν = 2 − q のとき：（23）より µ = (3− 2q) / (2− q)

となり，(µ, ν, q) = ((3− 2q) / (2− q) , 2− q, q)．この結果
に先立ち，Tsallisは qには 3種類 qsen, qrel, qstatがあり，こ
の 3つ組を q-トリプレットと呼んだ [15]．
qsen の sen は sensitivity を表し，リアプノフ指数 λ1

の特徴付けである dξ/dt = λ1ξ を先の (10) と同様に
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1

qsen
= qstat +

1

qrel
= 2)

dξ/dt = λqξ
q と拡張したときの q を表す．qrel の rel は

relaxation を表し，物理量 Ω の緩和時間 τ1 の特徴付け
である dΩ/dt = −Ω/τ1 を dΩ/dt = −Ωq/τq と拡張し
たときの q を表す．qstat の stat は stationary state を
表し，Tsallis エントロピー最大化で現れる q を表す．
特に，論文 [30] の脚注で，これら 3 つの q の間には，
qrel + 1/qsen = 2, qstat + 1/qrel = 2 の関係があることを
数値計算から予想していた．実は，これら 2 つの関係式
より，ここで求めた (µ, ν, q)と (qsen, qrel, qstat)の間には，
(µ, ν, q) = (1/qsen, 1/qrel, qstat)の関係があることを容易に
確かめることができる．

(iv) ν = 1/qのとき：（23）より 1/ (1− µ) = 1/ (q − 1)−
1/qを得る．これは，論文 [31]において理論的に導かれてい
た 1/ (1− qsen) = 1/αmin−1/αmaxにおいて，αmax−αmin

を 1にリスケールした結果に一致する．ここで，αmax, αmin

は，マルチフラクタルの理論で現れる f (α)スペクトルに
おいて f (α) = 0 を満たす局所次元 α (αmin < αmax) で
ある．
以上のように，Tsallis統計の代表的な 4つの数理構造は

(23)と (24)の式で統一的に表現できる．つまり，(23)よ
り，Tsallisエントロピー Sq の qは µと ν で定まる．
べき指数を決める qが，何によって決まるのかという点

は，この分野の多くの研究者が関心をもつ．(23)は，その
一つの解答になっている．今後，ここで述べた 4つの数理
以外にも，Tsallisエントロピー Sq の q を決める構造が現
れるかもしれないが，式 (24)を満たすことが予想される．

2.7 まとめ
Tsallis統計の基礎であり，また，出発点となった Tsallis
エントロピーを中心に，その基礎数理について述べてき
た．時間軸で追えば，Tsallisエントロピーの提案が最初で
あったが，その背後には，非線形微分方程式 (10)があるこ
とがわかっていただけたかと思う．そのため，Tsallis統計
の適用範囲は，統計力学に限らない．たとえば，本稿で出
てくる q-Gauss分布 (21)は，数理統計学の検定で重要な
t-分布そのものである．
一方で，Boltzmann-Gibbs統計で実験データを説明でき
ず，かつ，データが示す分布がべき乗則にしたがう場合，
適切な qを選べば，そのデータをこの数理の枠組みで説明
できる可能性は高くなる．ある程度，データフィッティン
グの操作をすることは避けられそうにないが，本稿の数理
の枠組みを使えば，その整合の意味を深く理解する助けに
なるだろう．
なお，ここでは，Tsallis統計を扱ったが，Tsallisエント

ロピー以外にも，一般化エントロピーは，数多く提案され
ている．私が国際会議で見た範囲では，約 20個ぐらいの一
般化エントロピーはあったと思われ，その多くは，エント
ロピーを特徴づけする公理系から始まり，適当な条件下で，

そのエントロピーを最大化することにより，大統一理論の
志向なのか，より一般的なカノニカル分布を網羅してい
ることを示すものが少なくない．しかし，Tsallisエントロ
ピーのように，非線形微分方程式 (10)のような基本的な
微分方程式に立脚できる非加法的統計力学は，筆者の知る
限り，未だ見つかっていない．
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