JOURNAL OF PLASMA AND FUSION RESEARCH

The Journal of the Japan Society of Plasma Science and Nuclear Fusion Research Vol. 101, No. 9, September 2025

Special Topic Articles

Anomalous Heat Generation Due to Hydrogen Diffusion in Condensed Matter	
1. Introduction ······IWAMURA Yasuhiro	337
2. Anomalous Heat Generation from Nanostructured Composite Metal Thin Films	
and Sample Analysis	339
3. Observation of Anomalous Heat Generation Using Radiation Calorimetry	
	344
4. Anomalous Heat Generation from Nano-Composite Metal Powder Material	
in the Hydrogen Circumstances ····································	
HIGASHI Shuto, SEIICHI Hayato and YAMAUCHI Tomoya	348
5. Anomalous Heat Observed from Metal Alloys in Hydrogen Using Differential	
Scanning CalorimetryKISHIDA Masahiro	353
6. Global Trends and Roadmap to Commercialization ····································	357
7. Future Developments	361
PFR List	364
Information	365
Announcement	370

Cover

Results of tomographic reconstruction of Core Density Collapse (CDC) observed in the LHD experiments using a newly developed tomography technique. The figure shows the mode structure obtained from density fluctuations measured by a CO_2 laser interferometer. The newly developed tomography technique enables the reconstruction of the mode structure on an entire cross-section, even when only a one-directional line of sight is available, as in the CO_2 laser interferometer in LHD. (Kentaro TAKEDA et al., Plasma and Fusion Research, Vol. 20, 1202037 (2025) https://www.jspf.or.jp/)