
JOURNAL OF PLASMA AND FUSION RESEARCH

The Journal of the Japan Society of Plasma Science and Nuclear Fusion Research Vol. 101, No. 3, March 2025

Lecture Note

Changes in Material Properties and Hydrogen Isotope Behavior of Tungsten under Neutron Irradiation	
3. Hydrogen Isotope Retention and Permeation Behavior in Neutron-Irradiated Tungsten	
and Tungsten Alloys NOBUTA Yuji and OYA Yasuhisa	83
Lecture Note	
Transmission Electron Microscope Techniques in Research on Fusion Reactor Materials	
3. TEM Observation of He Bubble	91
4. Research on Ceramic Coating Materials Utilizing TEM	96
Projectreview	
International Collaborative Research under the IEA PWI TCP	
HAMAJI Yukinori, TOGO Satoshi, OHNO Noriyasu, TANAKA Hirohiko,	
YOSIKAWA Masashi, KAJITA Shin, KAWAMURA Gakushi, SHOJI Mamoru,	
MIYAMOTO Mitsutaka, SAKAMOTO Ryuichi and LEE Heun Tae	100
PFR List	127
Information	128
Announcement	141

Cover

Water-window extreme ultraviolet (EUV) source image. We produced a Bi plasma by sub-nanosecond laser pulse at a wavelength of 1064 nm using a regenerative liquid target with a diameter of 30 microns in a vacuum. The present source size was observed to be 30 microns (FWHM) (vertical) and 25 microns (FWHM) (horizontal) by the EUV pinhole camera. The source image was time-integrated in the exposure time of 1 s.

(Tatsuya SORAMOTO et al., Plasma and Fusion Research, Vol. 20, 2406013 (2025) https://www.jspf.or.jp/)