二 講座 核融合炉材料研究における透過型電子顕微鏡 (TEM)

4. TEMを活用したセラミックス被覆材料の研究

4. Research on Ceramic Coating Materials Utilizing TEM

近田拓未 CHIKADA Takumi 静岡大学学術院理学領域 (原稿受付:2024年12月5日)

セラミックス被覆は、被覆材料や成膜手法によってその微細構造が大きく異なる. 核融合炉用セラミックス 被覆の研究開発において、被覆に起こる現象を正確に捉え、性能を評価するために、TEM による観察および分 析がきわめて重要である.本章は、TEM 観察によってこれまで明らかになったセラミックス被覆が見せる様々 な側面を、機能性被覆の研究開発状況とともに紹介する.

Keywords:

ceramic coating, tritium permeation barrier, electrical insulation, corrosion, irradiation

4.1 はじめに

核融合炉心を囲むブランケットは、中性子の熱エネル ギーへの変換やトリチウムの増殖など、炉の成立に必要不 可欠な機能を担う機器である.それはつまり、ブランケッ トの構成材料が、高エネルギー中性子、高線量のガンマ 線、Liを含むトリチウム増殖材、および冷却材に曝され ることを意味する.核融合炉の高効率かつ安全な運転に向 けて、腐食、照射およびトリチウムによる材料の特性変化 に伴う諸性能の劣化、さらには寿命を厳密に予測する必要 がある.本章では、先進ブランケットへの設置が検討され ている機能性セラミックス被覆を題材として、TEMを活 用した研究例を紹介する.

4.2 機能性セラミックス被覆の役割

ITERのDT燃焼後に建設が見込まれる原型炉、ひいて は商用炉の運用において,燃料サイクルの確立は必要条 件である. ITERで扱う燃料トリチウムは数kgに限られ るが、例えば商用炉で1GWの出力を得るためにはトリチ ウムが56kg必要であり、燃焼率を3%とすると処理量は 1800 kg程度となる[1]. このような桁違いの量のトリチ ウムが循環するブランケットや熱交換器において、金属配 管の外や二次冷却側へのトリチウムの透過漏洩が深刻にな ると考えられている.この課題は、水素同位体の溶解度の 高いリチウムを増殖材および冷却材として用いる自己冷却 型ブランケットシステムを除いて、ほぼすべてのブラン ケット概念で共通した課題である. その対策として長年検 討されてきたのが、構造材料表面にトリチウム低透過性の 被覆を設置することである. 被覆の候補材料は多岐にわた るが、酸化物、窒化物、炭化物といったセラミックスは金 属と比較して格段に水素を透過しにくい性質が知られてい

るため、厚さ数ミクロン程度の被覆を施してトリチウムの 透過を被覆前の3桁程度以下に低減することを想定し研究 が進められている.この被覆はトリチウム透過低減被覆 (Tritium Permeation Barrier, TPB)とよばれるが、一 方でほとんどの場合、この被覆には他の機能も要求される ため、筆者は近年、単に機能性被覆と称している.機能性 被覆がブランケットにおいて増殖材に接する環境では、ト リチウム透過低減に加えて腐食耐性が必須である.さら に、増殖材として液体金属(LiやLi-Pbなど)を用いる場 合は、磁場と金属流の相互作用によって流動が妨げられる 電磁流体力学的圧力損失が課題となる.これに対しては、 配管と金属流を電気的に絶縁することで軽減できるため、 絶縁性被覆の設置が有効である.増殖材と機能性被覆に求 められる機能を表1にまとめる.なお、それぞれの機能の 目安としては、運転温度において

トリチウム透過低減:未被覆の1/1000以下 腐食低減:約5年

電気絶縁:電気伝導度として10² S m⁻¹[2] が求められる.これに加えて、中性子およびガンマ線の照 射への耐性も必要となる.その損傷量は、寿命までに100 ~150 dpa (displacement per atom) と試算されている.

4.3 TEMによるセラミックス被覆の分析 核融合炉用途の機能性セラミックス被覆研究は半世紀近

表1 各種増殖材と機能性被覆に求められる機能.

機能\増殖材	固体	Li	Li-Pb	溶融塩
トリチウム透過低減	要	不要	要	要
腐食耐性	要	要	要	要
電気絶縁	不要	要	要	不要

College of Science, Shizuoka University, SHIZUOKA 422-8529, Japan

author's e-mail: chikada.takumi@shizuoka.ac.jp

く前から始まったものの、関連論文を調べる限り、世界の 研究機関で散発的に研究されてきたようである.筆者のよ うに20年にわたり研究を続けている例は少なく、ある一 つの成膜手法による被覆の成膜と性能評価に終止している ことが多い. したがって, 作製された被覆の膜質は研究毎 に大きく異なり、同じ被覆材料を用いても水素透過低減性 能が3~4桁異なる、といった状況が1990年代くらいまで 続いた[3]. TEM 観察に基づくセラミックス被覆の微細構 造分析が始まったのは2000年代であり、偏向磁場型フィ ルタードアーク装置を用いたα-Al₂O₃被覆の組織観察に用 いられた[4]. その後、トリチウム透過低減性能とセラミッ クス被覆の微細構造の関係が調べられた。例として、図1 に、高周波マグネトロンスパッタリング法(MS法)で作 製したY₂O₃被覆の重水素透過試験前後の断面TEM像を示 す. 試験前では柱状に被覆が成長し、その柱状構造の間に は隙間がみられる.一方,試験後には膜厚が小さくなると ともに、緻密な構造になり、直径数十nmの結晶粒が明瞭 に観察できる. 重水素透過試験では, 500℃および550℃ での試験中に透過が減少する様子が見られたことから,被 覆の緻密化および結晶粒の成長が透過の低減に寄与したと 考えられる.透過低減性能と被覆の結晶粒径の関係は、先 述の偏向磁場型フィルタードアーク装置で成膜したEr2O3 被覆の断面TEM像からも確認されている[5]. さらに, 被覆表面の重水素分布を二次イオン質量分析法で調べたと ころ、重水素は結晶粒界により多く存在していたことか ら、Er₂O₃被覆において重水素は結晶粒界を通って透過し ていることが示された[6]. この結果は、計算機シミュレー ションにおいても同様に再現できたことから[7],現状で 想定されている核融合炉の運転温度範囲(300~600℃程度) で多結晶セラミックス被覆を用いる場合の多くで成り立つ 可能性がある.

セラミックス被覆中の詳細な水素透過機構がいくつか の被覆材料で明らかになってきた2010年代前半から,核 融合炉用途で必須である放射線照射効果が研究され始め た.まず,中性子照射で導入される照射損傷を模擬するた めに,加速器を用いた重イオン照射が行われた.被覆は構 造材料基板に対して薄いため,中性子照射で起こると考え られる表面から均一な深さ分布の損傷が重イオン照射を用 いても導入可能であり,また入射粒子を基板まで到達させ るようにエネルギーを制御すれば,被覆中にとどまるイ

図1 MS法で作製した Y₂O₃被覆の断面 TEM 像(明視野像) (a) 成膜後(b) 重水素透過試験後.

オン数を少なくすることができるため都合が良い. 過去の 本誌解説記事[8]では、MS法で作製したY2O3被覆に対し て1.0 MeVのFe²⁺照射を行ったとき,表面から順に,① 結晶粒の大きい空隙(ボイド)を多く含む層、②空隙を ほとんど含まない微結晶層,③アモルファス層,の三層 が生成したことについて紹介した.これに関連して、図2 に6 MeVのNi²⁺照射を行ったY₂O₃被覆試料の断面TEM 像とエネルギー分散型X線分光法(EDSまたはEDX)に よるY, O, Fe, およびNiの分布を示す. アモルファス 層にFeが検出されたことから, 照射されたNiではなく, 基板から反跳した Feが被覆に入り込んでいることがわか る.この反跳したFeが被覆内で止まる際に損傷を与えた ことで、基板近くがアモルファス化したと考えられる. 一 方で、同じY2O3被覆においても、有機金属溶液を用いて、 塗布, 乾燥, 熱処理を経て作製する有機金属分解法(Metal Organic Decomposition法, MOD法) では, 照射効果が 異なった. 図3に、非照射および6.0 MeVのNi²⁺照射を 損傷密度が10 dpaとなるまで照射したY2O3被覆試料の断 面TEM像を示す. MS法で作製した被覆の照射後のよう に三層構造にはならず, また空隙(ボイド)などは生成さ れていなかった. さらに、結晶粒は直径50 nm 程度まで成 長した. この原因として、MOD法で作製した被覆は有機 物由来の不純物としてCを含み、かつ結晶粒が小さかった ため、照射欠陥が回復しやすかったことが考えられる、こ のように、成膜手法に応じて照射効果が異なることが明ら かになった

中性子照射効果には,照射損傷の導入の他にも,(n,p) 反応や(n,a)反応によるHやHeの生成,また核変換 の影響がある.ここでは,被覆中へのHeの生成を模擬 したHe注入実験を行った結果について紹介する.図4

図 2 6.0 MeV の Ni²⁺ を損傷密度が0.32 dpa となるまで照射した Y₂O₃被覆の断面 TEM 像(明視野像)と EDS 元素マッ ピング.

図 3 MOD 法で作製した ZrO₂被覆試料の6.0 MeV の Ni²⁺ 照射 前後の断面 TEM 像(明視野像)(a)照射前(b)10 dpa 照 射後.

図 4 MS 法で作製した Y₂O₃被覆の Fe-He 同時照射後の断面 TEM 像(明視野像)(a)ジャストフォーカス(b)アンダー フォーカス(c)オーバーフォーカス.

に、6.4 MeVのFe³⁺と0.16~1.0 MeVのHe⁺を同時に照 射したY₂O₃被覆試料の断面TEM像を示す.(a)のジャス トフォーカスと比較して、(b)の試料下側に焦点を合わせ たアンダーフォーカスと(c)の試料上側に焦点を合わせ たオーバーフォーカスでは白黒が反転したHeバブルがみ られる.このようなナノサイズのバブルを観察するには、 TEMの技術が必要不可欠である.なお、このHe注入が水 素同位体透過に与える影響として、Y₂O₃被覆の結晶構造 変化に伴う透過の減少を阻害するという結果が得られてい る[9].

被覆の放射線照射効果と並行して進められてきたのが. トリチウム増殖材による腐食挙動である。特に、液体金属 を用いたトリチウム増殖システムでは、高温流体が被覆に 接触することから、腐食が深刻と考えられる. 現在液体ト リチウム増殖材の主流は、LiとPbを原子数比15.7:84.3 で共晶合金化したLi-Pbであり、近年EUではAl₂O₃系被 覆の研究開発が盛んである[10].過酷な環境でトリチウム 低透過性、照射耐性、腐食耐性といった多くの機能を一 層のセラミックス被覆で達成することは困難であるとい う背景から、被覆の多層化に関する検討が始まった。自 己冷却型Liブランケットシステムの研究開発では、 セラ ミックス層をLiと共存性の高いVなどの金属層で覆うこ とで、腐食を低減することが検討され、Li接触時におい ても高い電気絶縁性を保ったものの、試験後にV層の大規 模な剥離が見られた[11].一方,Li-Pbを用いた研究では, Er₂O₃被覆上にFe箔を設置した試料において,600℃で 3000時間の曝露後もLi-PbのEr₂O₃層への浸透等はなく、 またFe箔の減肉も小さかったことから, 実用化に有望で あることが示された[12]. その後, ホットプレス法を用い たセラミックス-金属接合被覆が作製され、高い性能を示 したことから、流動場の曝露試験や管材などへのスケール アップが進められている[13,14]. 金属層だけでなく, セ ラミックスを用いた多層被覆の研究も活発になってきた. 図5に、MOD法で作製したEr₂O₃-ZrO₂複層被覆の断面 TEM 像を示す. この試料は、Er₂O₃とZrO₂に対してそれ ぞれ2回ずつ成膜過程を繰り返しており、上部のZrO₂層 では中間に界面が観察されている.このように、走査型電 子顕微鏡では観察できない微細構造や界面の観察において も、TEMはきわめて有用といえる.

照射や腐食に関する個別の検討が進む中,核融合炉では これらの現象が同時に起こることから,照射と腐食の相 乗効果と水素透過に与える影響の検討も進められている. 図6に,MOD法で作製したZrO2被覆に対して2.8 MeVの

図 5 MOD 法で作製した Er₂O₃-Er₂O₃-ZrO₂-ZrO₂四層被覆の断面 TEM 像 (明視野像).

図 6 MOD 法で作製した ZrO₂被覆を6.0 MeV の Ni²⁺ 照射後, 500℃の Li-Pb に500時間曝露した試料の断面 TEM 像(明 視野像)(a)被覆全体像(b)被覆下部を高倍率, アンダー フォーカスで撮影した像.

Fe²⁺を16 dpaとなるまで照射した後,500℃のLi-Pbに 500時間曝露した試料の断面TEM像を示す.被覆には減 肉がわずかにみられた他,厚い腐食層が被覆上に生成され た.また,高倍率かつアンダーフォーカスで観察すると, 図6(b)に破線円で示すようにナノスケールの空隙(ボイ ド)が結晶粒界付近に偏析していることが明らかになった. 以上の結果から,重イオン照射で生成したボイドは粒界に 偏析し,Li-Pbの浸入を容易にしたことから,被覆の減肉 が進んだと考えられ,照射によって腐食が促進される可能 性が示された,この研究では重イオン照射後にLi-Pb曝露 試験を実施しているが,より実機に近い条件で被覆の挙動 を理解するためには,Li-Pb曝露環境下で照射実験や水素 透過実験を行うなど,核融合炉環境に特化した技術的な工 夫が必要になると考えられる.

4.4 おわりに

機能性被覆研究開発において、そのサイズ(主にnm~ μm)と微細組織が諸性能に与える影響の大きさから、走 査型電子顕微鏡(SEM)では追いきれない、結晶粒、粒界、 および照射損傷を分析可能なTEMおよび関連技術が必要 不可欠である.実際の核融合炉ではcm~mスケールの部 材への成膜が考えられるが、性能発現の基礎になるのは被 覆の微細構造であることは変わらない.その点において、 核融合炉の実現に向けてTEMを用いたセラミックス被覆 の分析評価は今後ますます重要になると考えられる.

参考文献

- [1] T. Tanabe, J. Nucl. Mater. **438**, S19 (2013).
- [2] H. Hashizume, Fusion Eng. Des. 81, 1431 (2006).
- [3] G.W. Hollenberg et al., Fusion Eng. Des. 28, 190 (1995).
- [4] Y. Yamada-Takamura *et al.*, Surf. Coat. Technol. 142-144, 260 (2001).
- [5] 鈴木晶大,近田拓未,田中照也:プラズマ・核融合学会 誌 **89**,349 (2013).
- [6] R. Sato et al., Fusion Eng. Des. 89, 1375 (2014).
- [7] W. Mao et al., J. Power Sources 303, 168 (2016).

近田拓未

静岡大学学術院理学領域 准教授.2011年 東京大学大学院工学系研究科 博士(工学). 東京大学助教,静岡大学講師を経て2023 年より現職.学部卒業研究以来,核融合炉

で使われる機能性材料,特に本解説記事の機能性被覆の研究 開発に従事.先日「Fusion Science School京都」を多方面 からのご協力のもと何とか終え,研究はもちろんのこと,よ り一層核融合人材の育成にも邁進したいと考える今日この頃 です.

- [8] 近田拓未:プラズマ・核融合学会誌 97,493 (2021).
- [9] K. Nakamura *et al.*, J. Nucl. Mater. **537**, 152244 (2020).
- [10] M. Utili et al., Fusion Eng. Des. 170, 112453 (2021).
- [11] B.A. Pint et al., J. Nucl. Mater. 367-370, 1165 (2007).
- [12] S. Horikoshi et al., Nucl. Mater. Energy 16, 66 (2018).
- [13] R. Norizuki *et al.*, Fusion Eng. Des. **168**, 112438 (2021).
- [14] H.L.L. Wai *et al.*, Surf. Coat. Technol. **480**, 130563 (2024).