# 講座 核融合炉材料研究における透過型電子顕微鏡 (TEM)

# 2. TEM で視る核融合炉材料の照射損傷

# 2. TEM Observation of Radiation Damage in Fusion Reactor Materials

橋本直幸 HASHIMOTO Naoyuki 北海道大学大学院工学研究院 (原稿受付:2024年11月5日)

核融合炉照射環境における構造材料の損傷機構を理解するため,透過型電子顕微鏡(TEM)を用いた微細組 織変化の観察・解析手法について,低放射化フェライト・マルテンサイト鋼を例に解説を試みた.照射導入点欠 陥の離合集散によって材料中に形成する欠陥クラスターは,格子間原子(I)型と空孔(V)型に大別され,それ ぞれ電子線の入射方位や反射ベクトル,フォーカスなど,適切な観察条件を選択して初めて適切な微細組織観察 像となり得る.

Keywords:

radiation damage, point defects, cluster, dislocation loop, transformation, cavity, reduced activation ferritic/martensitic steel

# 2.1 はじめに

現在,水冷却型軽水炉構造材料として,FCC構造のオー ステナイトステンレス鋼(あるいはBCC構造の低合金鋼) が広範に使用されているが、オーステナイトステンレス鋼 は、スウェリング、照射促進応力腐食割れ、破壊靭性の低 下、照射誘起偏析などが生じ、高温かつ高照射量の次世代 エネルギー炉システムには不適とされる[1-5]ことから. 重照射を受ける核融合炉第一壁の構造材料に対しては、高 温でより耐照射性に優れた低放射化フェライト・マルテン サイト鋼 (RAFM) の使用が考えられている. 核融合炉 構造材料は、基本的に、照射によって導入された点欠陥(原 子空孔: V及び格子間原子: I) を介した溶質原子の移動や 局所的な溶質濃度変化に起因した劣化が生じるが、照射下 での溶質原子の挙動については未だ不明な要素が多い.本 稿では、核融合炉照射環境における RAFM の損傷機構を 理解するため、組織学的なアプローチとして、透過型電子 顕微鏡(TEM)を用いた損傷組織変化の観察・解析手法 について解説する.

## 2.2 RAFM における照射損傷

RAFMが中性子やγ線を受けた場合,放射線と金属原 子との間に様々な物理的相互作用が生じるが,特に,中 性子エネルギーによる弾き出し(displacement)と核変 換(transformation)は金属材料の照射損傷挙動に多大な 影響を及ぼす.弾き出しと核変換によって生成した点欠陥 (point defect)とHe(α粒子)やH(陽子)は,照射下 という非平衡状態で相互作用しながら消滅,拡散,集合体 形成を繰り返し,材料のミクロ組織変化と機械的特性変化 が生じる主要因として振舞う.

# 2.2.1 弾き出し損傷

中性子エネルギーによる弾き出し損傷は、金属原子核が 中性子との衝突により運動エネルギーを受け取り、結晶格 子位置から離れて運動する現象であり、その結果、VとI が生成する. この1対の点欠陥をフレンケル対 (Frenkel pair) と呼ぶ. 一方, 核変換では(n, α) 及び(n, p) 核反応 により、材料中に存在しなかったHeやHが発生すると ともに金属原子自体が別の各種に変化する. 中性子と衝 突して最初に動き出す原子を一次弾き出し原子 (PKA: Primary Knock-on Atom) と呼ぶ. 1 MeVの中性子から PKAが受け取るエネルギーの平均値はおよそ40 keVであ り、例えば、Fe原子一個を弾き出すのに必要なエネルギー (弾き出しエネルギー, displacement energy): 40 eVと 比較して1000倍程度高いため、PKAからFe原子同士の 衝突が連鎖的に発生する. このような連鎖的な弾き出し による損傷をカスケード損傷(cascade damage)と呼称 し、その結果点欠陥が密集した領域をカスケードと呼ぶ. 通常,カスケード中心部にV,外側には多数のIが存在し, この時点で形成されているIの集合体は、TEMによって 観察可能なサイズ (>1 nm) となる.

#### 2.2.2 ミクロ組織の発達

照射下では、同種の点欠陥が集合して集合体(クラス ター:cluster)を形成する.体心立方(BCC)型結晶材 料では、集合体としてブラックドット、転位ループ、キャ ビティ(Heバブル及びボイド)、析出物などが挙げられる. さらに、集合体は点欠陥のシンクとしても働き、同種の点 欠陥を吸収することで成長し、異種の場合は収縮する.ま

Laboratory of Advanced Materials, Faculty of Engineering, Hokkaido University, Sapporo, HOKKAIDO 060-8628, Japan

author's e-mail: hasimoto@eng.hokudai.ac.jp

た,集合体が点欠陥を放出する確率は温度に依存し,高温 ほど起こりやすくなる.言い換えれば,集合体からの空孔 の放出は空孔の可動温度領域でなければ生じ得ない.

#### 2.2.2.1 ミクロ組織の形成

# 2.2.2.1.1 照射下における点欠陥の挙動

照射による材料特性の変化は、弾き出しによるV及びI の生成と点欠陥の拡散、点欠陥集合体の形成が基礎とな る.Iの形成エネルギーは数eVであり、高温に置いても 熱平衡濃度は極めて小さいが、照射下ではVと同数だけ弾 き出され、材料中に過飽和に存在する.また、移動エネル ギーが小さいため、室温のような低温であっても容易に拡 散し、集合体(転位:dislocation)を形成して材料内に蓄 積する.一方.Vの形成エネルギーは1.5 eV程度であるた め、高温では熱平衡濃度が高く、高温での拡散や変形(ク リープ)などを誘発する.

弾き出しにより生成した点欠陥は、基本的に、対消滅、 粒界などの吸収源(シンク: sink)への吸収、集合体形成 のいずれかの道をたどる、VとIの濃度 $C_v$ 、 $C_i$ の時間変化 は、それぞれの拡散速度を $D_v$ 、 $D_i$ 、空孔の熱平衡濃度を  $C_v^{e}$ 、生成速度をP、対消滅反応定数をR、シンク濃度を  $C_s$ とし、

| $dC_v/dt = P - RC_vC_i - D_v(C_v - C_v^{e})C_s$ | (1) |
|-------------------------------------------------|-----|
| $dC_i/dt = P - RC_vC_i - D_iC_iC_s$             | (2) |

と表される[6]. この解は温度やシンク濃度に依存するが,  $D_i \gg D_v$ であるため、Iは早めにシンクで消滅し、熱平衡以 上のV(過飽和空孔)が蓄積されて定常状態になる.した がって、照射下では通常、熱平衡濃度以上のVが常に存在 するため、熱拡散がほとんど無視できる温度領域であって も、照射促進拡散(radiation enhanced diffusion)と言 われるVを介した原子の拡散が起こる.式(1)及び式(2) からわかるように、照射下における点欠陥濃度は生成速 度、シンク濃度、拡散速度、温度に強く依存するため、熱 平衡状態における拡散と照射下における拡散を区別するこ とは困難であり、このことはつまり、照射下で観られる現 象は非照射における現象とは別の状態であると理解すべき ことを意味する.

#### 2.2.2.1.2 格子間原子型欠陥集合体(転位成分)

照射したRAFM中に観察される転位には、ブラックドッ ト(black dot),転位ループ(dislocation loop),ネットワー ク転位(network dislocation)がある.このうち、照射に より新たに形成する転位成分は、ブラックドット及び転位 ループである.ブラックドット及び転位ループは、BCC の(100)面上にIが平面的(2次元的)に集合したもので ある.これに対し、Vが2次元的に集合すると1原子面不 足(intrinsic)した状態の積層欠陥ループとなる.図1に TEMで撮影したBCC材料中の転位ループを示す.これら の転位はバーガースベクトル(Burgers vector)で定義さ れ、バーガースベクトルの方向がすべり方向で大きさが面 間隔と一致している場合は完全転位である.BCC中に形 成した転位ループは $b = a\langle 110 \rangle$ のバーガースベクトルを有 する.また、ブラックドットはTEMで黒点状に観察され



図1 被照射 BCC 材料中の(100)面上に形成した転位ループ. (図中の線文状の黒いコントラスト)電子ビーム入射条件: B ≒ [011], g = 200.

る黒点であり, 歪場を有することから欠陥クラスターであ ると判断されるが, 極めて微細であることから実体の判定 には注意が必要である[2]. これら各種転位は, 材料変形 に必要な転位線の運動に対する障害物として作用し, 転位 線をピン止めする. その結果, 材料の降伏強度が上昇し, 所謂照射硬化の要因となる. したがって, 可能であれば照 射損傷組織として発達しないことが望ましい.

#### 2.2.2.1.3 格子間原子型欠陥集合体のTEM 観察

BCC構造を有する鉄系材料では、中性子照射によって 弾き出されて生き残ったIがI型クラスターを形成し、成 長と共に転位ループへと変化する.このI型クラスターの TEM観察には、通常、ひずみの芯が鮮明に観察可能な弱 ビーム暗視野法(Weak-Beam Dark Field)を用いる.

図2に, 試料を透過した電子線の透過波と回折波の経路 を模式的に示した.

試料中に入射して回折した電子線は、コンデンサーレ ンズにより後焦点面(Back Focal Plane)において一旦 収束し、回折像(Diffraction Image)を形成する.ここ で入射波を選択して結像すれば明視野像(Bright Field Image)が得られ、回折像を選択すれば暗視野像(Dark Field Image)が得られる.一方、回折像には菊池図形 (Kikuchi pattern)と呼ばれる入射電子線の方向を精確に 表す図形が現れる.菊池図形は白黒一対の平行線からな り、それぞれが結晶中の(hkl)面と(h(-)k(-)l(-))面



図2 試料を透過した電子線の透過波と回折波の経路.

に対応している. (*hkl*)面でブラッグ反射を起こした電子 線は(*hkl*)面の法線を中心とし, (90 –  $\theta$ )。の半角を有する 円錐状に広がる (**図**3). 菊地線は結晶の僅かな傾きによ りその位置を大きく変えるため, この手法を用いてクラス ター及び転位ループの芯を鮮明に結像することができる. **図**4 は菊地線を利用してビームの反射条件を適切に選択し て結像させた明視野像: BF (3g励起)及び弱ビーム暗視 野像: WBDF (g/5g) であり, 微小サイズのクラスター が鮮明に結像される.

#### 2.2.2.1.4 核変換によるHe及びHの生成

核変換により生成するHeやHの濃度は、材料の各構成 元素における(n,  $\alpha$ )及び(n, p)のような核反応すべてにつ いて反応断面積を用いて算出する.熱中性子に対して断 面積が大きいのは、<sup>10</sup>B(n,  $\gamma$ )と<sup>14</sup>N(n, p)反応であるが、 <sup>58</sup>Niの2段階反応<sup>58</sup>Ni(n,  $\gamma$ ) <sup>59</sup>Ni(n,  $\alpha$ ) <sup>56</sup>Feと<sup>58</sup>Ni(n,  $\gamma$ ) <sup>59</sup>Ni(n, p) <sup>59</sup>CoはそれぞれHeとHの生成に大きく寄与す る[7].

HeやHは点欠陥との相互作用により中性子照射下のミ クロ組織変化に大きな影響を及ぼす[8,9]. Heは金属材料 中ではほとんど固溶しないため、核変換により多量に導 入されると、ヘリウムバブル(He babble)の形成やV型 集合体の安定化に寄与し、さらには結晶粒界に偏析して 材料の脆化を引き起こす要因となる. Hは非常に拡散し やすい元素であるが、点欠陥、特にVに容易に捕獲(ト ラップ)され、V型集合体の形成・成長挙動に多大な影響



 図3 (*hkl*) 面の法線を中心として円錐状に広がるブラッグ反射 を起こした電子線(Kossel Cone)の概略図.
Kossel Cone とエワルド球の交線が菊地線となる.



 図 4 菊地線を利用し、電子ビームの反射条件を適切に選択して 結像させた BF 像(3g 励起)及び WBDF 像(g/5g). を及ぼす. V型集合体が形成し, その後さらに空孔を吸収 すれば, TEM観察可能なサイズ (>1 nm) まで成長して キャビティ (cavity) となり, 材料の体積膨張 (スウェリ ング: swelling) が生じることになる. また, HeやHの 材料への影響を考える場合, それらの生成量と弾き出し損 傷との比率である He/dpaやH/dpaが評価指標として用い られる. なお. 空孔型クラスター (微小キャビティ, ボイ ド, バブル等)の観察は, 基本的にフォーカスの調整に依 る. 図5に. 中性子照射したRAFM中に観察されたキャ ビティを示しており, 左図はアンダーフォーカス像, 右図 はオーバーフォーカス像である. キャビティのコントラス トは, アンダーフォーカス条件では白く, オーバーフォー カス条件で黒く観察される. これは, TEM観察における フリネルフリンジのコントラストと同様の現象と理解され ている.

#### 2.2.2.1.5 空孔型欠陥集合体のTEM 観察

キャビティとは材料中の3次元的な空洞を指し,実態は Heバブルや空孔集合体のボイド (void) である.図6に 中性子照射したRAFM中に形成したキャビティのTEM像 を示す.転位はVよりもIを吸収しやすいバイアス (bias) を有するため,転位ループの形成・成長に伴いVが材料中 に過剰に蓄積され,V集合体を形成することになる.この とき,核変換生成物であるHeはV集合体を安定化させ, さらに多量に存在する場合には,V集合体内部に存在して Heバブルとして析出する.一般に,低温で形成したバブ ルは内圧が高いため球形であり,一方,ボイドは特定の結 晶面に囲まれた矩形の傾向にある.高温で転位のIに対す るバイアスが有効で,Vが過剰に存在する場合には,ボイ



図 5 被照射 RAFM 中に形成したキャビティ 左図:アンダー フォーカス像,右図:オーバーフォーカス像.



#### Fe<sup>3+</sup>+He<sup>+</sup>+H<sup>+</sup>照射



図6 被照射 RAFM 中に形成したキャビティ(ボイド:多角形 状の白いコントラスト,ヘリウムバブル:微小円状の白い コントラスト). He 原子 により早期に安定化した空孔型ク ラスターは微小サイズのヘリウムバブルとなり,H原子の 助けを借りて大きなサイズに成長する. Lecture Note

ドが安定的に成長する.ボイド形成には原子空孔の移動が 伴うため,低温では点欠陥の再結合(recombination)が 律速となり,ボイド形成が起こらない.一方,高温では点 欠陥の拡散が律速となり,ボイドからVの熱放出が活発化 するため,ボイドの成長が停滞する.この結果,ボイドの 形成・成長は中間温度領域でピークとなる[10-12].キャ ビティの形成は,総体積に相当するスウェリングを起こし て構造材料の寸法安定性や破壊特性に悪影響を及ぼすこと が知られているため,高温で使用する場合には,特に注意 が必要である.これらキャビティやバブルなどのV型集合 体も,転位同様,運動転位の障害物として作用して材料の 機械的特性を変化させるため,可能な限り抑制する必要が ある.

図6では、キャビティ(ボイド及びHeバブル)の分 布が不均一であり、特に粒界近傍でキャビティ欠乏帯 (Defect free zone: DFZ)の存在点が確認できる.欠陥に 対する粒界のシンク強度を調査するため、適切な条件で熱 処理した転位フリーなRAFMに対して電子線照射その場 観察実験を行った結果、境界からの距離の関数としてキャ ビティの勾配分布が観察された.DFZの幅を決定する重 要なパラメータとして粒界面の原子密度比[13]が提案され ており、原子密度比が高い粒界は、通常、原子密度比が低 い粒界と比較して、DFZが拡大する傾向にある.これら の結果は、RAFMの照射誘起二次欠陥の分布は均一では なく、粒界面の原子密度比によって特徴付けられるシンク 強度によって制御される可能性が高いことを明確に示して いる.

#### 2.2.2.1.6 析出物

析出物(precipitate)は、元素組成や結晶構造が母相 とは異なる相(phase)である. 図7に、電解研磨により 薄膜化したRAFM 試料のSEM像を示す. 熱平衡条件下で は熱力学的に安定な相が決まっているが、照射下では点欠 陥が非平衡的に過剰に導入されるため、相変化が促進(照 射促進析出: radiation enhanced precipitation)あるい は誘起(照射誘起析出: radiation induced precipitation) されることがある[13,14]. RAFMは、通常、高温で一定 時間保持したあと焼き入れ・焼戻し処理が行われるため、



図7 表面を電解研磨した RAFM 試料の SEM 像. 析出物(図中 の白い点状のコントラスト)が粒界に沿って高密度に分布 していることが確認できる.

熱力学的には安定状態である.しかしながら,長時間中性 子照射環境で保持すれば,熱力学的に存在しない温度領 域における析出[14,15]や,熱時効よりも短時間での析出 [16]が起こり得る.

#### 2.3 おわりに

核融合炉材料,特にRAFMにおける照射損傷機構を理 解するため,照射によって過飽和に導入される点欠陥に起 因する欠陥クラスターのTEM観察手法について,実例を 示しながら解説した.欠陥クラスターは,中性子照射のカ スケード損傷領域近傍に形成する空孔及び格子間原子の微 小集合体から始まり,引き続き導入される点欠陥を吸収し 成長して初めてTEMによって観察可能となる.したがっ て,TEM観察に至るまでの様々な現象については,計算 科学やより分解能の高い別の手法に頼らざるを得ないこと を認識しておく必要がある.

#### 参 考 文 献

- [1] T. Yang et al., J. Mater. Res. 33, 19, Oct 14 (2018).
- [2] M.L. Jenkins and M.A. Kirk, Characterization of Radiation Damage by Transmission Electron Microscopy, Series in Microscopy in Materials Science (CRC Press, 2001).
- [3] G.E. Lucas, J. Nucl. Mater. 206, 287 (1993).
- [4] F.A. Garner, Materials Science and Technology, Vol. 10A, Nuclear Materials, Part 1, Chapter 6, VCH 1994.
- [5] J-C. van Duysen *et al.*, Effects of Radiation on Materials: 16th Int. Symp., ASTM STP 1175, ASTM, p.747, 1993.
- [6] 石野 葉:照射損傷,原子力工学シリーズ8(東京大学 出版会,1979).
- [7] L.R. Greenwood and F.A. Garner, J. Nucl. Mater. 233-237, 1530 (1996).
- [8] B.N. Singh and H. Trinkaus, J. Nucl. Mater. 186, 153 (1992).
- [9] N. Sekimura *et al.*, J. Nucl. Mater. **191-194**, 1234 (1992).
- [10] F.A. Garner et al., 6th Int. Symp. On Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors, The Minerals, Metals, and materials Society, Warrendale, PA 783-790 (1994).
- [11] J.P. Foster et al., J. Nucl. Mater. 224, 207 (1995).
- [12] D.J. Edwards et al., J. Nucl. Mater. 317, 32 (2003).
- [13] N. Hashimoto *et al.*, Mater. Charact. **207**, 114448 (2024).
- [14] P.J. Maziasz, J. Nucl. Mater. 205, 118-145 (1993).
- [15] P.J. Maziasz and C.J. McHargue, Int. Materials Rev. 32, 190 (1987).
- [16] S.J. Zinkle et al., J. Nucl. Mater. 206, 266 (1993).

