JOURNAL OF PLASMA AND FUSION RESEARCH

The Journal of the Japan Society of Plasma Science and Nuclear Fusion Research Vol. 100, No. 6, June 2024

Special Topic Articles

Present Status and Future Prospects of Quark Gluon Plasma Investigation and Heavy-Ion Collision	
1. Introduction KITAZAWA Masakiyo and SHINTO Katsuhiro	245
2. Discovery of Quark-Gluon Plasma in High-Energy Heavy-Ion Collisions at SPS and RHIC	
OZAWA Kyoichiro and SAKO Hiroyuki	249
3. Detailed Characterization of Quark-Gluon Plasma and Future Prospects GUNJI Taku	255
4. Quark Gluon Plasma and QCD Phase Diagram at RHIC ESUMI ShinIchi	261
5. Future Prospects of Research on High-Baryon Density Quark Matter and J-PARC-HI	
	266
6. Conclusion	274
Lecture Note	
Social Infrastructure Protection and Damage Prediction Based on Space Weather Research	
6. Impact of Solar Activity on Power Grid ······ EBIHARA Yusuke and WATARI Shinichi	277
7. Forecast of Geomagnetic Storm	285
PFR Abstracts	292
Information	293
Announcement ·····	295

Cover

(a)I-V curve obtained with the Retarding field analyzer (RFA) and (b)comparison with calculations considering ion Larmor motion. (c) residual errors between experimental data and calculations, indicating that a perpendicular ion temperature of 2.1 eV reproduces the experimental result well. (d)the result of the ion sensitive probe measurement. The perpendicular ion temperature evaluated with the RFA and that obtained with the ISP were in good agreement.

(Shigetaka KAGAYA et al., Plasma and Fusion Research, Vol. 19, 1201021 (2024) https://www.jspf.or.jp/)