JOURNAL OF PLASMA AND FUSION RESEARCH

The Journal of the Japan Society of Plasma Science and Nuclear Fusion Research Vol. 100, No. 3, March 2024

Special Topic Atricles

Recent Plasma Technologies for Removal of Persistent Chemicals	
in Water without Environmental Impact	
1. Introduction	121
2. Development of Technologies for Generation of Discharge Plasmas	
in Water and Treatment of Persistent Organic CompoundsTAKEUCHI Nozomi	123
3. Development of Plasma-Liquid Interface Processes Utilizing Porous Materials	
	128
4. Generation of Plasma in Contact with Water Surface and Development of	
Compact Pulsed Power Generator Utilizing SiC-MOSFET with a High Blocking Voltage	
TAKAHASHI Katsuyuki, TAKAKI Koichi, KUROIWA Takeharu and	
SAKAMOTO Kunihiro	135
5. Decomposition of Organic Compounds by Pulsed Discharge Inside Ozone Bubbles ····· OSAWA Naoki	142
6. Pulsed Electrical Discharge Plasma Technology for Industrial Wastewater Treatment	
······································	148
7. Conclusion — TAKEUCHI Nozomi	155
PFR Abstracts	157
Information	158
Appelipagment	169

Cover

The study evaluated the effect of a magnetic field on the corrosion properties of reduced activation ferritic steel in high-temperature, high-pressure water. The figure compares the oxide film properties in an environment without a magnetic field and in a magnetic field of 1.3 Tesla. The magnetic field increased the growth rate of oxide particles on the surface, indicating that it affects the corrosion properties of reduced activation ferritic steel.

(Motoki NAKAJIMA and Takashi NOZAWA, Plasma and Fusion Research, Vol. 19, 1205007 (2024) http://www.jspf.or.jp/)