JOURNAL OF PLASMA AND FUSION RESEARCH

The Journal of the Japan Society of Plasma Science and Nuclear Fusion Research Vol. 99, No. 10, October 2023

Special Topic Atricles

Basics and Applications of Helicon Plasma Sources	
1. Introduction	437
2. Fundamentals of Helicon Plasma Production and Characteristics of Helicon Discharges	
SHINOHARA Shunjiro and ISAYAMA Shogo	439
3. Effects of Neutral Gas on Plasma Performance	
	444
4. Advanced Electric Space Propulsion	
\sim Magnetic Nozzle Thruster, Additional Acceleration using Rotational Magnetic Field	
TAKAHASHI Kazunori and FURUKAWA Takeru	449
5. Plasma Turbulence Experiment in Helicon Plasma ·······INAGAKI Shigeru	456
6. Summary SHINOHARA Shunjiro and ISAYAMA Shogo	461
The JSPF Award ······	463
PFR Abstracts	465
Information	466

Cover

In the ITER project, the Japanese domestic agency (QST) is procuring several pieces of equipment, including the Diagnostic Rack, which is situated in the lower port extending from the ITER vacuum vessel. This Diagnostic Rack incorporates various lower port plasma diagnostics and radiation shielding. Due to the radiation environment, there is a necessity to connect and disconnect the electrical connector, which supplies power to the diagnostic instruments, using a dedicated remote-operated robot, the Divertor Remote Handling System (DRHS). Consequently, the development of a dedicated Remote Handling Electrical Connector (RHEC) compatible with remote operation is underway.

(Suguru TANAKA et al., Plasma and Fusion Research, Vol. 18, 1405070 (2023) http://www.jspf.or.jp/)