JOURNAL OF PLASMA AND FUSION RESEARCH

The Journal of the Japan Society of Plasma Science and Nuclear Fusion Research Vol. 99, No. 7, July 2023

Commentary	
Recent Progress in Astrophysical Gyrokinetic Turbulence	309
Special Topic Articles	
Developments of Muon Catalyzed Fusion Concept	
1. Introduction	319
2. Progress in New Muon Catalyzed Fusion Theory YAMASHITA Takuma and KINO Yasushi	321
3. Dimensions of Steady-State Muon-Catalyzed Nuclear Fusion Reactor	
through Particle and Energy Diffusion Ranges	
SATO Motyasu, KOBAYASHI Naoto, NAKATANI Shin and FUJITA Aki	327
4. New Concept of Confining μ CF Nuclear Reactor by Ram Pressure	
of Compressible Supersonic Fluid TANAHASHI Yoshiharu	331
5. Development of Intense Negative Muon Source with Energy RevcoveryMORI Yoshiharu	335
6. Transmutation of LLFP (Long Lived Fission Products)	
by Neutron Derived from the Inflight-Muon Catalyzed fusion (μCF)	
YAMAMOTO Norimasa, SATO Motoyasu, TAKANO Hirohisa and IIYOSHI Atsuo	340
7. Summary and Perspective OKADA Shinji	344
Lecture Note	
Re-Learning Micro-Instabilities in Magnetically Confined Plasmas	
4. Trapped Electron Mode	346
5. Electromagnetic Ion-Temperature-Gradient Mode and Kinetic Ballooning Mode	
······································	356
PFR Abstracts ·····	365
Information	367
Announcement ·····	375

Cover

Ion temperature gradient (ITG) instability in a JT-60SA ITER-like plasma calculated by the global gyrokinetic code GKNET. The upper figure shows the n=100 toroidal mode component of the electrostatic potential in the linear phase, and the lower one shows the electrostatic potential after nonlinear saturation. The field-aligned coordinate system enables GKNET to resolve the instability with very fine spatial structure efficiently as shown in these figures.

(Shuhei OKUDA et al., Plasma and Fusion Research, Vol. 18, 2403040 (2023) http://www.jspf.or.jp/)

Published Monthly by The Japan Society of Plasma Science and Nuclear Fusion Research 3-1-1 Uchiyama, Chikusa-ku, Nagoya 464-0075, Japan Tel (052)735-3185, Fax (052)735-3485, E-mail: plasma@jspf.or.jp, URL: https://www.jspf.or.jp/