JOURNAL OF PLASMA AND FUSION RESEARCH

The Journal of the Japan Society of Plasma Science and Nuclear Fusion Research Vol. 96, No. 3, March 2020

Commentary	
Characteristics of Nanoseconds Pulsed Discharge Plasma Having Intense Reduced Electric Field and	
Its Control Techniques ············ NAMIHIRA Takao, RYU Terumasa and WANG Douyan	97
Special Topic Articles	
Unsung Technologies in Plasma Processing which Supports Manufacturing Quality of Semiconductor Devices	
1. Introduction UESUGI Fumihiko	103
2. Instantaneous Generation of Many Flaked Particles in Mass-Production Plasma Etching Equipment	
KASASHIMA Yuji and UESUGI Fumihiko	106
3. Development of Detection Method for Micro-Arc Discharge in Plasma Process	
by using Acoustic Emission Sensor KASASHIMA Yuji, TABARU Tatsuo and UESUGI Fumihiko	111
4. Micro-Arc Discharge Detection Method in Plasma Process by Monitoring Load Impedance	
KUNIIE Shinji, SATO Shusaku, KIMURA Naoya, WAKAMOTO Satoru, KASASHIMA Yuji,	
MOTOMURA Taisei, TABARU Tatsuo and UESUGI Fumihiko	117
5. Development of High Corrosion Resistance Ceramics for Chamber Parts in Mass-Production	
Plasma Etching Equipment ············ KASASHIMA Yuji and UESUGI Fumihiko	122
6. Conclusion UESUGI Fumihiko	126
Project Review	
Japan-US Joint Research Project PHENIX-Accomplishments of 6 Years Project and the Next Program-	
1. Overview of PHENIX Project ······· UEDA Yoshio, HATANO Yuji, YOKOMINE Takehiko, HINOKI Tatsuya,	
HASEGAWA Akira, OYA Yasuhisa and MUROGA Takeo	129
2. Task 1: Investigation of Overall Heat Flow Response in Plasma-Facing Component	
AKIYOSHI Masafumi and IBANO Kenzo	131
3. Task 2: Thermal and Mechanical Properties of Neutron Irradiated Tungsten	
HINOKI Tatsuya, HASEGAWA Akira, MIYAZAWA Takeshi,	
AKIYOSHI Masafumi and KONDO Sosuke	136
4. Task 3: Tritium Behavior and Its Neutron Irradiation Effect	
················ OYA Yasuhisa, HATANO Yuji , NOBUTA Yuji, YAMAUCHI Yuji, KOBAYASHI Makoto,	
OHYA Makoto, KATAYAMA Kazunari, OTSUKA Teppei and UEDA Yoshio	140
5. FRONTIER Project (2019-2024) ························ HATANO Yuji ,YOKOMINE Takehiko, HINOKI Tatsuya,	
HASHIMOTO Naoyuki, OYA Yasuhisa, OTSUKA Teppei, KONDO Masatoshi,	
MIYAZAWA Junichi and NAGASAKA Takuya	145
R&D Activities	
Collaboration Works of JSPS Bilateral Joint Research Projects (Japan (NIFS) - China (ASIPP))	
NOJIRI Kunpei and ASHIKAWA Naoko	149
Mourning	152
Information	154
Announcement ······	160

Cover

TEM images of cross-section of He-W co-deposition layer formed at (a) 473 K and (b) 573 K. (c) TEM images and EDS analysis of 573 K. With increasing the sample temperature from 473 K to 573 K, the size of the He bubbles increased from several nm to several tens of nm, and blisters were generated at 573 K, as shown in (c). The density of W in the co-deposition layer formed at 573 K is about 62% of that of the W layer below. The results indicate that the co-deposition layer is very porous and comprised of fine He bubble and cavities. (Kosuke ASAI *et al.*, Plasma and Fusion Research, Vol. 15, 1201004 (2020) http://www.jspf.or.jp/)