

スーパーコンピュータ「京」で切り拓くプラズマ乱流研究の新展開

Shedding Light on Plasma Turbulence by Utilizing the Supercomputer K

前山伸也 MAEYAMA Shinya 名古屋大学 (原稿受付:2015年5月25日)

「京」は様々な分野の科学技術研究に応用されており、プラズマ物理研究もその一つである.数万の計算ノードで構成される「京」の性能を最大限に引き出すため、並列計算手法とその最適化技術の開発が行われている. 「京」を活用することで、これまで扱うことのできなかった大規模なプラズマ乱流シミュレーションが可能となった.電子スケールからイオンスケールまでの乱流揺動を扱う高解像度プラズマ乱流シミュレーションにより、両スケールの乱流間に相互作用が存在し、それが乱流輸送に影響を及ぼすことが明らかになった.従来の電子・イオンスケール分離の仮定を覆す、マルチスケール乱流の物理が新たに解き明かされつつある.

Keywords:

plasma turbulence, gyrokinetics, high performance computing

1. はじめに

「京」(http://www.aics.riken.jp/en/k-computer/) は 日本のフラッグシップスーパーコンピュータであり, 医療・ 創薬,物質科学,気象,ものづくり,宇宙など様々な研究 分野で活用されている.核融合プラズマ研究においても, ITERを見据え,プラズマ乱流とそれが引き起こす輸送現 象についてジャイロ運動論に基づく数値シミュレーション 研究が精力的に行われている.近年,「京」の高い演算性 能を最大限に引き出すことで,従来は困難であった電子ス ケールからイオンスケールの乱流を同時に取り扱うマルチ スケールプラズマ乱流の直接数値シミュレーションが実現 された(図1)[1].これにより,プラズマ乱流現象におけ るマルチスケール性という新たな物理の理解が進展してき ている.

本解説では、1章でプラズマ乱流研究と高性能計算の背 景について触れ、2章でプラズマ乱流の計算モデルと「京」 における高性能計算の詳細について説明し、3章でそれに より実現されたマルチスケールプラズマ乱流の直接数値シ ミュレーションの物理結果を紹介する.最後にまとめと今 後の展望について述べる.

1.1 ジャイロ運動論に基づくプラズマ乱流研究

磁場閉じ込め型核融合装置のプラズマ閉じ込め性能は, プラズマ中で生じる電磁的揺らぎを伴う乱流輸送現象に大 きく影響される.プラズマ乱流は磁力線垂直方向にラーマ 半径程度のスケールで生じる微視的不安定性により駆動さ れる.乱流輸送の定量的な評価には,捕捉電子の様な粒子 軌道や波・粒子共鳴,ゾーナルフロー減衰といった運動論 的効果が重要となるため,プラズマ乱流を記述する第一原

Nagoya University, Nagoya, AICHI 464-8602, Japan

理的方程式としてジャイロ運動論方程式が用いられる. ジャイロ運動論はプラズマ乱流の時間スケールより非常に 速いサイクロトロン運動を除去しつつ,ラーマ半径程度の 微視的現象を記述するために開発された[2,3].

ジャイロ運動論に基づくシミュレーション研究として は、イオン温度勾配乱流とそれによるゾーナルフロー形成 [4]などのイオンラーマ半径 ρ_{ti} 程度のスケールで起こる乱 流や、電子温度勾配乱流[5,6]などの電子ラーマ半径 ρ_{te} 程度のスケールで起こる乱流についての解析が数多く報告

author's e-mail: smaeyama@p.phys.nagoya-u.ac.jp

されている.近年では微視的ティアリングモードや運動論 的バルーニングモードなどの電磁的不安定性による乱流解 析にも適用がなされており、コード間ベンチマークや実験 との比較による V&V (検証と妥当性確認)研究も盛んに進 められている.

従来の多くのプラズマ乱流研究では、イオン・電子ス ケール間のスケール分離が仮定されてきた. それは、両者 の時空間スケールが熱速度とラーマ半径に比例して約43倍 (等温の水素プラズマの場合)程度離れているためである. そのため、イオンスケール乱流と電子スケール乱流に関し て、それぞれ個別にシミュレーション解析がなされてき た.一方,両スケール間の相互作用の可能性についても議 論がなされ[7-9],人為的に低いイオン・電子質量比を課 したマルチスケール乱流のモデル解析が行われた [10,11]. 低質量比を用いることで両スケール間は縮まり, 数値的に扱いやすくなる.しかし、このような方法ではイ オン・電子スケール間の相互作用を過大評価していないか という懸念があった.また,最新の Alcator C-Mod 実験と の比較研究では、イオン・電子低質量比モデルは実験に対 する再現性が低く,実質量比での解析が必要となることが 示唆されている[12,13].上述の先行研究では静電近似が 用いられているが、より現実的な電磁乱流解析において は、電子の小さい慣性が重要となるため、やはり実質量比 の取り扱いが必要と考えられる.

こうした背景から、イオン・電子実質量比でのマルチス ケール乱流解析の必要性が高まってきた.一方で、マルチ スケール乱流の直接数値シミュレーションには高い時空間 分解能が必要となる.その実現には、「京」の様な最先端 のスーパーコンピュータの活用が不可欠である.

1.2 スーパーコンピュータによる高性能計算とその困難性

最新のスーパーコンピュータは多数の計算ノードからな る分散メモリ型並列計算機である.その性能を最大限に引 き出すためには、プログラムの高度な並列化が求められ る.これからスーパーコンピュータを用いた高性能計算を 始めようという読者は、並列コンピューティングについて 基礎から詳しく解説された講座があるので、そちらも合わ せて参照されたい[14].

どの程度まで並列化すれば高度な並列化と言えるかについて,現在のスーパーコンピュータで目標とする並列性能 を挙げておこう.並列性能の簡単な指標として,並列数 *n* で並列化した時の高速化率 *S_n* はアムダールの法則として 以下の様に見積もられる.

$$S_n = \frac{1}{1 - \alpha + \alpha/n} \tag{1}$$

ここで、 α は並列化率、つまり、プログラムの処理全体の内 で並列化されている部分が占める割合を表す量である.並 列化率が並列数に対する性能の伸び率に与える影響を**22** に示す、一例として、 $\alpha = 99\%$ の場合を考えると、並列数を どれだけ増やしても残り1%は並列化されていないという ことなので、 $S_{\infty} = 1/(1-\alpha) = 100$ 倍までしか高速化されな いことになる.百万コア近くからなる最先端のスーパーコ

図 2 並列数 n と高速化率 S_nに関するアムダールの法則. 並列化 率 α に応じて高速化率の上限が決まる.

ンピュータを使いこなすためには, *a* =99.9999% を超える 高い並列化率を実現する必要がある.このような高い並列 性能を実現するためには,単純にプログラムを並列化する だけではなく,負荷バランスの均一化やノード間通信の最 適化に細心の注意を払う必要がある.

2. 計算モデルと「京」における最適化手法

前章では、ジャイロ運動論に基づくマルチスケール乱流 解析の必要性と、高い並列性能が要求されることを述べ た.本章では、それらを実現するため、ジャイロ運動論の 計算科学的特性と「京」の計算機特性に合わせて開発され た最適化手法について説明する.

2.1 ジャイロ運動論的シミュレーションの計算モデル

ジャイロ運動論に基づくプラズマ乱流の数値シミュレー ションは、ノイズ除去や計算の安定性向上といった観点から、実空間だけではなく速度空間も格子で区切る Vlasov シミュレーションが近年の主流となっている.その基礎方 程式は、5次元位相空間 $(x,y,z,v_{\parallel},\mu)$ における分布関数揺 動 $\tilde{f}_{s}(t;x,y,z,v_{\parallel},\mu)$ と静電揺動・磁場揺動ポテンシャル $\tilde{\phi}(t;x,y,z), \tilde{A}_{\parallel}(t;x,y,z)$ の時間発展を記述するジャイロ 運動論的 Vlasov-Poisson-Ampère 方程式系である.

$$\frac{\partial \tilde{f}_{s}}{\partial t} + \boldsymbol{v}_{gy} \cdot \nabla \tilde{f}_{s} + \dot{\boldsymbol{v}}_{\parallel} \frac{\partial \tilde{f}_{s}}{\partial \boldsymbol{v}_{\parallel}} = C_{s} + S_{s}$$
(2)

$$(-\varepsilon_0 \nabla_{\perp}^2 + \Sigma_{\rm s} P_{\rm s}) \tilde{\phi} = \sum_{s} e_{\rm s} \int \, \mathrm{d}v \, {}^3J_0 \tilde{f}_{\rm s} \tag{3}$$

$$-\nabla_{\perp}^{2}\tilde{A}_{\parallel} = \mu_{0}\sum_{s}e_{s}\int \mathrm{d}v^{3}v_{\parallel}J_{0}\tilde{f}_{s}$$

$$(4)$$

ここで、 v_{gy} , \dot{v}_{\parallel} , C_s , S_s , P_s , J_0 はそれぞれジャイロ中心 速度,磁力線平行方向加速度,衝突項,平衡分布による寄 与,分極項,ジャイロ位相平均オペレータを表す.物理的 には,平衡分布のもつ密度・温度勾配といった熱力学的力 が微視的不安定性の駆動源として働く(式(2)中の S_s 項). 微視的不安定性により生じた揺動電場 $\vec{E} = -\nabla \tilde{\phi} + b \partial_t A_{\parallel}$ や揺動磁場 $\vec{B} = \nabla \times (\tilde{A}_{\parallel} b)$ は分布関数揺動の移流を引き起 こし,その非線形混合過程により乱流状態へと発展する.

数値計算の観点からは、Vlasov 方程式(2)はそれぞれの 粒子種 s についての 5 次元空間(x, y, z, v_l, μ) 上の数値流体 力学計算とみなすことができる.ジャイロ運動論的シミュ レーションコード GKV [15,16] では,磁力線垂直方向x, yに対しては高速フーリエ変換(FFT)を用いたフーリエス ペクトル法を,磁力線平行方向zおよび速度空間方向 v_{\parallel} , μ 対しては4次または5次精度差分法を用いて位相空間を 離散化する.多次元問題であることに加えて,マルチス ケール乱流解析では高い時空間解像度が必要なため,格子 点数は~数千億点,総計算量~100EFLOP 程度と見積もら れる.これは最新の Core i7 (384GFLOPS)を10%程度の効 率で動かし続けたとして100年以上かかる計算量であり, 現実的な時間でシミュレーションを行うには、少なくとも 10万コア以上の並列化が求められる.

2.2 「京」の特徴

「京」は82,944の計算ノードからなる大規模分散メモリ 型並列計算機である.各計算ノードは8つのプロセッサコ アを内蔵した CPU (理論性能128GFLOPS)と16GBの共有 メモリ,ノード間通信用インターコネクトコントローラに より構成され,各々が Tofu インターコネクトと呼ばれる 6次元メッシュ/トーラストポロジー (ユーザー視点では 3次元トーラス)をもつネットワークで接続されている [17].「京」の性能を引き出すためには,こうした階層的 メモリ構造,マルチコア計算ノード,3次元トーラスネッ トワークという特徴に合わせた最適化が必要となる.

2.3 「京」における最適化①:多次元領域分割

数値流体力学計算の並列化手法として一般的に用いられ るのは Message Passing Interface (MPI)を用いた領域分 割である.計算量は分割された部分空間の体積に比例する ので分割数に対してよくスケールするが,領域分割により 発生するデータ通信量は部分空間の表面積に比例するため 分割数に対してスケールしない.一般に表面積と体積の比 は分割数とともに増大するため,通信量は相対的に増大し ていく.体積当たりの表面積をなるべく小さくして領域分 割するには,多次元分割を行い(多次元)立方体に近くす るとよいことが分かる.つまり,多次元領域分割を行うこ とは,分割数の上限を増大させるとともに,演算量あたり の通信量を削減する効果がある.

このため、GKVコードでは多次元多粒子種問題である利 点を活かして、x(または y) z, v_{\parallel} , μ , sについての5次 元領域分割を行う.こうして分割された部分空間を各計算 ノードに割り当てるとすると、分割境界に対応した様々な データ通信を計算ノード間で行う必要が出てくる.具体的 には、x, y方向への並列 FFT のための転置通信, z, v_{\parallel} , μ 差分演算のための1対1通信、電荷密度・電流密度を求 めるための v_{\parallel} , μ , sへの総和通信が主なノード間通信とな る.こうした様々なノード間通信は、プロセッサ-メモリ間 のデータ転送に比べて低速であるため、しばしば並列化率 向上の妨げとなる.そのため、ボトルネックとなるノード 間通信をいかに削減するかが並列性能向上の鍵となる.

2.4 「京」における最適化②:セグメント化プロセス配置 「京」のネットワーク特性上,分割された部分空間を3次 元トーラス上にどのように配置するかが通信性能に影響す る. Tofu インターコネクトの性能を最大限に引き出し,5 次元位相空間の領域分割により生じた様々なノード間通信 のコストを最小化できるよう,図3に示すようなセグメン ト(区分)化したプロセス配置を考案した.鍵となる着想 は,最も通信コストの大きいx,y方向転置通信を3次元直 方体形状となるように局所的に配置することである(この 集団の単位をセグメントと呼ぶことにする).これにより, 転置通信のバイセクションバンド幅を最大化するととも に,「京」専用高速集団通信アルゴリズム[18]を有効化し て通信の高速化を図る.さらに,各セグメントをz, v_{\parallel} , μ に相当する様に3次元的に配置することにより,z, v_{\parallel} , μ 1対1通信が隣接するセグメント間のみで行われるように なり,通信ノード間距離の最小化や通信の衝突の減少が期 待できる.また, v_{\parallel} , μ ,s方向総和通信も同一平面内で行 われるようにすることで,通信の独立性を高めている.

2.5 「京」における最適化③:通信と演算の同時処理

セグメント化プロセス配置により通信コスト削減の目途 が立ったが、さらなる高速化のために通信コストを実効的 に隠蔽すべく、通信と演算の同時処理を用いる.マルチコ ア計算ノードにおける共有メモリ並列は Open Multi-Processing (OpenMP)を用いて実装される.MPIと OpenMPを併用したハイブリッド並列では、図4に示す様 にMPI通信を行っている間、他のOpenMPスレッドが通信 終了待ち状態となってしまう.そこで、OpenMPのマス タースレッドを通信用スレッドとして明示的に利用するこ

図3 3次元トーラスネットワークにおけるプロセス配置最適 化.5次元位相空間分割において生じる転置・1対1・総 和といった様々な通信を局所的に行う.

図4 OpenMPスレッドを利用した通信と演算の同時処理.

```
とで、通信と演算の同時処理を実装する「19,20]. OpenMP
によるコーディングの例は以下の様になる.
 !$OMP parallel
 ! $OMP master
     call communication
 !$OMP end master
 !$OMP do schedule (dynamic)
     do i = 1, n
        call independent computation
     end do
 !$OMP end do nowait
   ÷
 !$OMP barrier
   ÷
 !$OMP end parallel
ここで,通信はマスタースレッドのみで行われ(2-4
行),同時に通信データを用いない独立な演算が他の演算
```

イリ, 同時に通信) ジモ用いない独立な演算が他の演算 スレッドで行われる(5-9行). dynamic スケジューリ ングを用いることにより,マスタースレッドも通信終了後 には演算に加わることができるため,演算負荷バランスの 均等化に寄与する(図4). ここで, nowait 指示文により 同期が行われず,演算順序が保証されないため,必要に応 じて適宜 barrier 指示文を挿入することに注意が必要であ る.

通信と演算の同時処理を行わない場合の通信時間を T, 演算時間を C とすると, N スレッドを利用して通信と演算 の同時処理を行った場合の総処理時間 H は

$$H = \max\left(T, C + \frac{T}{N}\right) \tag{5}$$

となる. つまり, 演習量が少なく通信コストを十分に隠蔽 できない場合(*C* < *T*)通信終了までの待ち時間が発生し *H* = *T*となる. 一方, 十分な量の演算が確保されている場 合(*C* > *T*),通信コストはスレッド数分の一に削減され る. このことは,通信コストをスレッド全体で分担したこ とに相当しており,スレッド数が大きいほど通信隠蔽効果 が大きくなるため,近年のマルチコア・メニーコア計算 ノードに向いた手法といえる.ただし,上記の単純な見積 もりではスレッド並列におけるスケジューリングオーバー ヘッドは無視している.

上記の通信と演算の同時処理は簡易的な例であるが,実 装上は通信と独立な演算を用意するための工夫が必要とな る.ここでも多次元問題の性質を活かして,異なる次元軸 方向に関する計算の独立性を用いてパイプライン化(例え ば, $\mu = \mu_i$ 面上のFFTを演算する間に $\mu = \mu_{i+1}$ 面上のx, y方向転置通信を行うなど)することで,並列FFT や差分 演算などの通信と演算の同時処理を実装した.

2.6 最適化手法の効果

セグメント化プロセス配置と通信と演算の同時処理の効 果を見るため、「京」上での通信・演算コストの内訳を調 べた結果を図5に示す.まず、最適化を行わなかった場合 に比べて、セグメント化プロセス配置を用いた場合には、 転置通信・総和通信のコストが半分程度,1対1通信のコ ストが2割程度に低減されている.これは、ネットワーク 上でランダムに行われていた通信パターンが、セグメント 化プロセス配置により各通信が局所かつ独立になるように 整えられたことによる.最適化なしの場合には通信量と演 算量が同程度であったが、通信コストの削減により、通信 量より演算量が多くなったので、通信と演算の同時処理に よる通信隠蔽が効果的に働くと期待される.実際、通信と 演算の同時処理も実装した場合、通信コストが実効的に隠 蔽されていることが見て取れる.

最適化を実施したGKVコードの「京」におけるスケーリ ングを図6に示す.原子力機構のスーパーコンピュータ BX900における性能も併せて記載する.開発した最適化手 法のおかげで,「京」で目標としていた数千億格子点の計 算に対して,約60万コアまでの良好なスケーリングが得ら れた.演算性能は786.4 TFlops (理論ピーク比 8.29%),実 行並列化率はα=99.99994%という高い値を実現し,目標 としていた並列性能を達成した.これにより,プラズマ乱 流シミュレーションは飛躍的に高速化され,従来は実現不 可能だったイオン・電子実質量比におけるマルチスケール 乱流の直接数値シミュレーションを可能とした[21].

3. マルチスケール乱流シミュレーション

既に述べたように、従来のジャイロ運動論に基づくシ ミュレーション研究では電子スケール乱流とイオンスケー ル乱流のスケール分離を仮定して、個別の解析がなされて きた.しかしながら、乱流においては非線形混合過程を介

図6 GKV のスケーリング (原子力機構のスーパーコンピュータ BX900 と理研の「京」における演算性能).

Commentary

して波数空間でのエネルギー、エンストロフィーあるいは エントロピーの逆/順カスケードが起こり、広範なスペク トルの乱流揺動を作り出すため、電子・イオンスケール乱 流間のスケール分離の仮定は必ずしも自明ではない. 低質 量比・静電近似の下で行われたマルチスケール乱流のモデ ル解析では、イオンスケールの不安定性が存在する場合に 電子スケールのモードが強く抑制されることが示唆されて いる[10,11].しかし、低質量比の導入による人為的なス ケールの操作は、線形成長率に影響を与えうる上に[12]、 スケール間相互作用を過大評価する可能性があることか ら,実質量比の解析は計算機資源の制約から課題として残 されていた.こうした背景から、(i)イオン・電子実質量比 では、両者の乱流のスケールがさらに大きく離れるが、そ のような場合でもスケール間相互作用が存在しうるのか? (ii)静電近似が成り立たない有限ベータ値プラズマでは, マルチスケール乱流の描像は変化するのか?という疑問に 答えるために、イオン・電子実質量比かつ電磁揺動を含ん だジャイロ運動論モデルに基づくマルチスケール乱流の直 接数値シミュレーションを実施した. 大きく時空間スケー ルの離れた乱流を同時に解像しつつ時間発展を計算する必 要があるため、計算科学的にもチャレンジングな大規模計 算となった. 典型的な計算量としては2000億格子点, 30万 時間ステップ程度であり、「京」の12,288計算ノード (98,304コア)を用いて120時間程度の計算時間を要する.

3.1 イオン・電子スケール乱流に関する従来の知見

イオン・電子スケールの代表的な微視的不安定性は、イ オン温度勾配不安定性[22]と電子温度勾配不安定性であ る.両者は、静電近似・断熱的電子(あるいは断熱的イオ ン)応答の仮定の下で相似の線形分散関係に従い、典型的 にはラーマ半径程度の波長と反磁性ドリフト周波数程度の 成長率・周波数をもつため、質量比の平方根 $\sqrt{m_i/m_e} \sim 43$ 程度異なる時空間スケールに不安定領域を持つ.

一方,イオン・電子ともに運動論的に扱い,電磁揺動を 含む場合には差異が生じる.イオン温度勾配モードは,捕 提電子の寄与により不安定性が強められ,シアアルヴェン 波との結合により安定化される[23].一方,電子温度勾配 モードにおける磁場揺動の影響は小さく,また,断熱的イ オン応答も高波数領域では相変わらず良い近似として成り 立つ.そのため,ベータ値が高くなり,磁場揺動の寄与が 増大するにつれてイオン温度勾配モードは安定化される が,電子温度勾配モードは成長率が保たれる.

電子/イオンの断熱的応答の近似下で,類似の線形応答 特性を持つイオン温度勾配モードと電子温度勾配モードだ が,非線形の乱流状態での振る舞いは大きく異なる.断熱 的電子応答は電子の低い慣性による磁力線方向の速い運動 に起因するため,磁気面上で一様な静電ポテンシャルであ るゾーナルフローに対し応答することができず,結果的に イオン温度勾配乱流ではゾーナルフローが卓越しやすい [4].一方,有限ラーマ半径効果に起因する断熱的イオン 応答はゾーナルフローに対しても応答するため,結果的に 電子温度勾配乱流においてはゾーナルフローが形成されに くく,ストリーマと呼ばれる半径方向に長く伸びたモード が卓越する[5,6].これらの物理描像は,電子・イオンとも に運動論的に扱った場合でも定性的に成り立つ.

3.2 マルチスケール乱流シミュレーション

こうした単一スケール乱流解析の知見を踏まえて,イオン温度勾配モードと電子温度勾配モードを同時に取り扱う マルチスケール乱流シミュレーションの結果を見てみよう.

微小擾乱を初期値として与えた場合、線形不安定なモー ドが成長する.電子温度勾配モードは電子ドリフト周波数 程度の高い成長率・周波数をもつため急速に成長し、電子 通過時間 R/vte 程度の時間スケールで卓越する. 揺動振幅 が大きくなり、非線形移流項が効いてくると、波の非線形 結合によりエネルギーのカスケードが起こる.この際の物 理は電子スケール揺動だけで決まるため、従来知られてい るようにストリーマ構造が卓越し、電子温度勾配モードの 成長が飽和にいたる、しかし、シミュレーションをさらに 解き進めていくと、イオン通過時間R/vii程度の時間スケー ルでイオン温度勾配モードが徐々に成長してくる. 図7の 静電揺動ポテンシャルのスナップショットはこの瞬間を捉 えたものである. イオン温度勾配モードはその後も成長を 続け、最終的な乱流状態はイオンスケールの揺動が支配的 となる. イオン温度勾配乱流ではエネルギーの逆カスケー ドによりゾーナルフローが形成され、ゾーナルフローによ るせん断効果がイオン温度勾配モードの成長を飽和させ, 定常状態となる.これと同時に、電子スケールで顕著に見 られていたストリーマ構造が消失することが観測された. このことは、イオン温度勾配乱流が電子温度勾配乱流を抑 制することを意味する.

マルチスケール乱流シミュレーションにより得られた乱 流揺動分布から評価した電子熱輸送係数の時間発展を図8 に示す.前述したとおり、シミュレーションの初期 $(t=0~10R/v_{ti})$ では電子温度勾配モードとそれにより作 られるストリーマが支配的なため、電子熱輸送も高波数の 電子スケール揺動が担う.一方、 $t=10~20R/v_{ti}$ ではイオ ン温度勾配モードがほぼ線形固有値と一致する成長率で成 長し、定常状態 $(t>30R/v_{ti})$ ではイオンスケール揺動が電 子熱輸送を支配する.このとき、電子スケールで起こる輸

図7 マルチスケール乱流シミュレーションにおける静電揺動ポ テンシャルのスナップショット.電子・イオンスケールの 揺らぎが混在している.

図8 マルチスケール乱流シミュレーションにおける電子熱輸送 係数 Xeの時間発展.実線,点線,破線はそれぞれ,全電子 熱輸送係数,イオン/電子スケール揺動により引き起こさ れる電子熱輸送の寄与を表す.

送が減少していることにも注目されたい.これは、イオン 温度勾配乱流の卓越により、ストリーマが抑制されたこと に起因する.これらの観測から、マルチスケール乱流シ ミュレーションにおいては、電子・イオンスケール乱流間 の相互作用が存在することが確かめられた.以下ではさら にその物理機構の詳細に迫ろう.

3.3 三波結合伝達解析

上述のマルチスケール相互作用を引き起こす物理機構は 非線形過程をおいて他にない.プラズマ乱流中の波・渦の 相互作用は, **E**×**B** ドリフトや磁場揺動中の磁力線方向移 流といった非線形移流項を介して起こる.中性流体乱流で も用いられるように,波の非線形相互作用を詳細に調べる には,三波結合解析の手法を用いることが有効となる [24,25].波数空間で表したジャイロ運動論における三波 結合伝達関数は以下の様に表される[26].

$$J_{k}^{p,q} = \sum_{s} \delta_{k+p+q,0} \frac{\mathbf{b} \cdot \mathbf{p} \times \mathbf{q}}{2B}$$
$$\times \operatorname{Re} \left[\left\langle \int \mathrm{d}v^{3} \left(\overline{\psi}_{sp} \tilde{g}_{sq} - \overline{\psi}_{sq} \tilde{g}_{sp} \right) \frac{T_{s} \tilde{g}_{sk}}{F_{sM}} \right\rangle \right]$$
(6)

ここで、 $\overline{\phi}_{st}$ はジャイロ平均された一般化ポテンシャル, *g*_a はジャイロ中心分布関数の断熱応答部分である.その 物理的意味について少し詳しく触れておこう. 三波結合伝 達関数 $J_h^{p,q}$ は,異なる波数 p, q の波との結合により,あ る波数kの波がエントロピーを受け取る $(J_{h}^{p,q} > 0)$,また は受け渡す $(J_{h}^{p,q} < 0)$ ことを表す. このような三波結合を 起こすモードは、共鳴条件k+p+q=0から決まる. 三者 の間のエントロピーのやり取りは、 $J_{k}^{p,q} + J_{q}^{k,p} + J_{p}^{q,k} = 0$ という詳細つり合いを満たし、そのため非線形相互作用は 全モード間のエントロピー保存則を満たす.また, $J_k^{p,q} = J_k^{q,p}$ という対称性を持つため、 $J_k^{p,q}$ を評価しただけ では波数 k へのエントロピーが波数 p, q のどちらから受 け取った(渡した)のか判別できず、波数間のエントロ ピー伝達の向きを決定するには詳細つり合いを調べる必要 がある.詳細つり合いの式から明らかなように、2つの波 が受け渡し1つの波が受け取る,あるいは1つの波が受け 渡し2つの波が受け取るという2種類のパターンがある.

例えば、よく知られたゾーナルフローによるイオン温度勾 配乱流のせん断は、ゾーナルフロー(波数 p)を介してイ オン温度勾配モード(波数 k)のエントロピーが高波数 モード(波数 q)へと伝達される機構であると解釈できる. このとき、ゾーナルフローは仲介役として働くのみでエン トロピーの受け渡しはほとんど起こらず ($J_p^{q,k} \sim 0$)、イオ ン温度勾配モードは減衰し ($J_k^{p,q} < 0$)、高波数モードが駆 動される ($J_q^{k,p} > 0$)が、高波数モードは位相空間混合と衝 突の効果によりやがて散逸する.

三波結合解析を、マルチスケール乱流において観測され たストリーマの消失過程に対して適応した. イオン温度勾 配モードが成長し、イオンスケール乱流揺動が作られる と、ストリーマはそれらのモードと結合するようになる. $k_{\perp}\rho_{ti} \sim 0.1$ 程度の長波長のゾーナルフローは、イオン温度 勾配モードの飽和に本質的であるが、電子スケールのスト リーマとの結合は小さい.このことは、ストリーマに対し ては、イオン温度勾配モードの作る長波長のゾーナルフ ローはほとんど相互作用しないというスケール分離の考え 方と合致する. 定常状態でのストリーマに対する三波結合 伝達関数は、k₁ρ_{ti}~1程度の波数をもつ乱流渦との結合が 顕著であり、これにより高波数モードへとエントロピーが 受け渡されることが確認された.こうした中間的な波長の 乱流渦は、イオン温度勾配乱流の順カスケードにより作り 出され、電子スケール乱流より大きな構造と速度シアを持 つため、ストリーマをせん断し、減衰させる.

図9に電子・イオンスケール乱流の特徴的な波数領域と 観測された相互作用を模式的にまとめた.従来はイオン温 度勾配モードと電子温度勾配モードは43倍もスケールが離 れているので相互作用しないと考えられていた.そのた め、イオン温度勾配乱流と電子温度勾配乱流は個別に解析 が行われてきた(図9(a)).43倍もスケールが離れた現象 はあまり相互作用しないだろうというスケール分離の考え はそれほど間違っておらず、長波長のゾーナルフローはス トリーマの抑制にあまり寄与しない(図9(b)において ZF

図9 プラズマ乱流の典型的波数スケールと相互作用の模式図. (a)従来のスケール分離描像では、イオン温度勾配モード (ITG)とゾーナルフロー(ZF)というイオンスケール乱流 と電子温度勾配モード(ETG)とストリーマという電子ス ケール乱流を個別に扱ってきた.(b)マルチスケール描像 では、両者の間に相互作用が存在する.スケールの近いITG 乱流渦はストリーマをせん断する.

Commentary

とストリーマの相互作用は小さいことが三波結合伝達解析 により確かめられた).しかし,乱流は順/逆カスケード によりそれぞれ高/低波数の揺らぎを作りだす.そのた め,イオン温度勾配乱流の作る比較的高波数の微細な乱流 渦と,電子温度勾配乱流の作る比較的低波数のストリーマ はより近い時空間スケールで生じ,両者の間には相互作用 が起こる(図9(b)のITG 乱流渦とストリーマの相互作用).

3.4 有限ベータプラズマにおけるマルチスケール乱流

第3.2, 3.3節では静電近似の下でのマルチスケール乱流 シミュレーションの結果について解説した.静電近似では イオン温度勾配モードが十分に不安定であるが、有限ベー タプラズマでは磁場揺動効果により、イオン温度勾配モー ドは臨界安定近くまで安定化されうる.このような場合, 電子スケール乱流からイオンスケール乱流への寄与が無視 できないことが明らかになった.これは従来の先行研究で は発見されていなかった現象である. 電子スケール乱流か らの寄与を考慮しなかった場合に比べて熱輸送が3倍近く 増大するケースも発見されており[1],乱流輸送の評価に おいても重大なインパクトをもちうる. 有限ベータプラズ マに対しても三波結合解析を適用することで、電子スケー ル乱流渦がゾーナルフローの減衰に寄与していることが分 かってきた[27]. このように、ゾーナルフロー、イオン温 度勾配乱流、電子温度勾配乱流の三者が複雑に関与したマ ルチスケール乱流の物理機構が徐々に明らかになってきて いる.

4. まとめと展望

計算機性能の向上は目を見張る勢いであるが、最新の大 規模並列計算機の恩恵を受けるには、物理モデルと計算機 特性の両方をよく理解したシミュレーションコード開発が 不可欠である.磁場閉じ込め核融合の分野で最大規模の数 値解析を必要とするジャイロ運動論的シミュレーションに 基づくプラズマ乱流研究では、様々な最適化技術を駆使し て「京」の性能を最大限に引き出し、マルチスケール乱流 の直接数値シミュレーションを実現することで、革新的な マルチスケール乱流の物理を明らかにした.このことは, スーパーコンピューティングの発展がプラズマ科学の発展 を後押ししている一例といえる. さらに現在, 2020年を目 標にエクサフロップス級のポスト「京」の開発が進められ ており、核燃焼プラズマ解析による核融合炉運転支援も取 り組むべき課題の一つとして取り上げられている.このよ うに高性能計算を用いたプラズマ物理研究は、新たな物理 を切り拓いていく手段として、また、ポスト「京」と同時 期にファーストプラズマを予定している ITER 計画を後押 しするツールとして、さらに重要性を増していくだろう.

マルチスケール乱流の直接数値シミュレーションによ り、イオン温度勾配乱流と電子温度勾配乱流という異なる 時空間スケールの乱流の間に、相互作用が存在することが 実証された.さらに、マルチスケール相互作用により熱輸 送スペクトルが大きく変化しうることが示された.これに より, Dorland や Jenko らの電子温度勾配乱流解析[5,6]以 来の,ストリーマが電子熱輸送を支配するだろうという単 ースケール描像は修正が必要とされる.マルチスケール相 互作用の一例として,イオン温度勾配乱流が作り出す乱流 渦によるせん断効果がストリーマを安定化するという物理 機構が明らかになった.こうしたプラズマ乱流のマルチス ケール性を解き明かしていくために,従来のスケール分離 の仮定を覆し,新たなプラズマ乱流研究を切り拓いていく 必要性がある.

謝辞

本解説記事の執筆にあたり、ご議論いただいた井戸村泰 宏研究主幹,渡邉智彦教授に感謝いたします.また、本研 究は HPCI 戦略プログラム分野 4 「次世代ものづくり」の 支援を受け、筆者は JSPS 科研費26800283の助成を受けま した.計算は HPCI 一般利用課題 hp120011の資源を利用し て行われました.

参 考 文 献

- [1] S. Maeyama *et al.*, Proc. in 25th IAEA Fusion Energy Conf., Saint-Petersburg, Russia, TH/1-1 (2014).
- [2] 洲鎌英雄:プラズマ・核融合学会誌 79,107 (2003).
- [3] X. Garbet, et al., Nucl. Fusion 50, 043002 (2010).
- [4] Z. Lin *et al.*, Science **281**, 1835 (1998).
- [5] W. Dorland et al., Phys. Rev. Lett. 85, 5579 (2000).
- [6] F. Jenko et al., Phys. Plasmas 7, 1904 (2000).
- [7] S.I.Itoh and K.Itoh, Plasma Phys. Control. Fusion 43, 1055 (2001).
- [8] J. Li and Y. Kishimoto, Phys. Rev. Lett. 89, 115002 (2002).
- [9] C. Holland and P. H. Diamond, Phys. Plasmas 11, 1043 (2004).
- [10] J. Candy *et al.*, Plasma Phys. Control. Fusion **49**, 1209 (2007).
- [11] T. Gorler and F. Jenko, Phys. Rev. Lett. 100, 185002 (2008).
- [12] N. T. Howard et al., Phys. Plasmas 21, 032308 (2014).
- [13] N. T. Howard et al., Phys. Plasmas 21, 112510 (2014).
- [14] 渡邉智彦他:プラズマ・核融合学会誌 89,45 (2013);
 ibid 49 (2013); ibid 119 (2013); ibid 171 (2013); ibid 245 (2013).
- [15] T.-H. Watanabe and H. Sugama, Nucl. Fusion 46, 24 (2006).
- [16] S. Maeyama *et al.*, Comput. Phys. Commun. 184, 2462 (2013).
- [17] Y. Ajima et al., Computer 42, 36 (2009).
- [18] T. Adachi et al., Comput. Sci. Res. Dev. 28, 147 (2013).
- [19] Y. Idomura *et al.*, Int. J. High Perform. Comput. Appl. 28, 73 (2014).
- [20] S. Maeyama et al., Plasma Fusion Res. 8, 1403150 (2013).
- [21] S. Maeyama et al., Parallel Comput. 49, 1 (2015).
- [22] W. Horton, Rev. Mod. Phys. 71, 735 (1999).
- [23] J. Y. Kim *et al.*, Phys. Fluids B 5, 4030 (1993).
- [24] O. D. Gurcan et al., Phys. Rev. Lett. 97, 024502 (2006).
- [25] H. Sugama et al., Phys. Plasmas 16, 112503 (2009).
- [26] M. Nakata et al., Phys. Plasmas 19, 022303 (2012).
- [27] S. Maeyama et al., Phys. Rev. Lett. 114, 255002 (2015).

解析まで行っています.大学に着任したばかりで慣れない講 義に悪戦苦闘していますが,それより何より,近頃の最大の 関心事は,生まれたばかりの第一子が可愛くてしょうがない ことです.