JOURNAL OF PLASMA AND FUSION RESEARCH

The Journal of the Japan Society of Plasma Science and Nuclear Fusion Research Vol. 83, No.6, June 2007

Commentaries

Developments of Water Detritiation Systems in a Fusion Reactor	
············· YAMANISHI Toshihiko, IWAI Yasunori, ISOBE Kanetsugu and SUGIYAMA Takahiko	545
Solid Hydrogen Pellet Fueling on Magnetically Confined Fusion Plasma	
SAKAMOTO Ryuichi and HOSHINO Mitsuyasu	560
Lecture Note	
Latest Laser Technologies and Their Application to Plasma Research	
Introduction UEDA Ken-ichi	567
1. Progress of Plasma Research brought by State-of-the-Art Laser Technologies	
1.1 Thomson Scattering Plasma Diagnostics Using State-of-the-Art Laser Technologies	
	569
1.2 Diagnostics of Processing Plasmas Using State-of-the-Art Laser Technologies SASAKI Koichi	573
Review Paper	
Renewable Energy Cycle with Magnesium and Lasers	578
PFR Abstracts	583
Plasma & Fusion Calendar	585
Information	586
Announcement	588

Cover

From an idea of using laser plasma channels as a waveguide for a sensor technology, we generated parallel plasma channels on a styrene board by a high power laser ($1.9 \times 10^{10} \text{W/cm}^2$) and propagated microwaves (300, 600, and 900 MHz) via it. As a result, it was confirmed microwave's propagation gain over 20 dB after generating plasma and their attenuation as the decay of plasma's conductivity. (Hirotomo NAKAJIMA et al., Plasma and Fusion Research Vol.2, 012 (2007). http://www.jspf.or.jp/PFR/)