
719

Surface Wave Analysis with Plasma Resonance
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Surface waves are studied in axially non-uniform cylindrical cold plasma with a linear density profile. The real
frequency, damping rate, and eigenfunction for the transverse magnetic mode in pure surface waves are obtained for
collisional plasmas, where the plasma resonance is taken into account. It is shown that the eigenfunction peaks at the
position of the plasma resonance layer.
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Surface waves have attracted much interest in the context
of heating and diagnostics for processing plasmas. The surface
waves discussed by Ghanashev et al. [1-3] are based on a
simple uniform plasma model; however, strictly speaking, the
plasma is non-uniform.

In this paper, we study surface waves in cold cylindrical
plasmas having a non-uniform axial density profile. In this
case, we encounter the problem of plasma resonance [4,5];
that is, the wave equation becomes singular at the layer where
the wave frequency ω is equal to the electron plasma
frequency ωpe when there are no collisions. Here, we solve
the dispersion relation and eigenfunction for the transverse
magnetic (TM) modes of surface waves, taking into account
this plasma resonance.

Our starting point is Maxwell’s equations for
electromagnetic wave fields E and B given by

∂
∂t

B = –∇ × E , (1)

∂
∂t

(ε r E ) = c 2 ∇ × B , (2)

where εr = ε /ε0, and ε0 and µ0 are the permittivity and
permeability of free space, respectively, and c is the speed of
light. If we assume an exp(–iω t) dependence for E and B,
we obtain from eqs.(1) and (2),

∇(∇ · E ) – ∇2E – k0
2εr E = 0 . (3)

where k0 = ω /c. We assume here that εr is radially uniform
and is a function of z only. In this case, eq.(3) is divided into
the following two equations:

∇⊥
2 ∂

∂z
Ez – ∂2

∂z 2
+ k0

2 ε r ∇⊥ ⋅ E⊥ = 0 , (4)

∂
∂z

∇⊥ ⋅ E⊥ – ∇⊥
2 + k0

2 ε r Ez = 0 . (5)

In this case we assume that a radially uniform plasma is

contained in a metal chamber having radius a. We also
assume an axial model shown in Fig. 1. The metal plate
corresponding to the slot antenna is located at z = –h, quartz
of ε1 = 4 exists for –h < z < 0, the plasma density increases
linearly for 0 < z < d, and the density is uniform with N0 for
z > d. When we assume a separable wave form as, for Ez and
∇⊥ ⋅ E⊥,

Ez(r, θ, z) = ψ (r, θ )F(z) , (6)

∇⊥ · E⊥(r, θ, z) = ψ (r, θ )G(z) , (7)

and furthermore, if we assume that ψ satisfies

∇⊥
2 + λ2 ψ (r , θ) = 0 , (8)

we obtain coupled equations for F and G as

λ2 d
dz

F + d2

dz 2
+ k0

2 ε r (z ) G = 0 , (9)

d
dz

G + λ2 – k0
2 ε r (z ) F = 0 . (10)

The solution of eq.(8) is given by

ψ (r, θ ) = Jm(λr)[c1 cos (mθ ) + c2 sin(mθ )] , (11)

where Jm is the Bessel function of the first kind, c1 and c2 are
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Fig. 1 Model with a non-uniform density profile.
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the integration constants, and m is an integer. From the
boundary condition that Eθ = Ez = 0 at r = a, that is, Jm(λa) =
0, we obtain

λ = jmn/a , (12)

where jmn is the n-th root of Jm(x ) = 0.
We next consider the solutions of eqs.(9) and (10).

From the boundary conditions in which Eθ = Er = 0 at z = –h,
and Ez = 0 at z = ∞, we obtain, for –h < z < 0,

F = α 0 cosh[ p1(z + h)] , (13)

G = –dF /dz = –α 0 p1 sinh[ p1(z + h)] , (14)

(k0
2 < λ2/ε1) and for z > d,

F = α3 exp(–p3z) , (15)

G = –dF /dz = p3α3 exp(–p3z) , (16)

where pj = (λ2 – k0
2εj)1/2, ε1 = 4, ε3 = 1 – (ωp0/ω)2, and ωp0 =

(e2N0/ε0m)1/2. For 0 < z < d, where the plasma is non-uniform,
we can obtain an equation for G as

d2G

dz 2
+

λ2

λ2 – k0
2 ε2

1
ε2

dε2

dz
dG
dz

– λ2 – k0
2 ε2 G = 0 , (17)

where ε2(z) = 1 – (ωp0/ω)2(z /d ). For λ2 >> | k0
2ε2 |, which is

justified for low-density plasmas, eq.(17) is reduced
approximately to

d2G

dz 2
+ 1

ε2

dε2

dz
dG
dz

– λ2 G = 0 , (18)

where the plasma resonance takes place at the zero zr =
d(ω /ωp0)2 of ε2(z) = 0. The solution of eq.(18) is then given
by

G = α1I0[λ(z – zr)] + α2K0[λ(z – zr)] , (19)

F = – 1
λ2

d
dz

G , (20)

where I0 and K0 are the modified Bessel function of the first
and second kinds, respectively. The dispersion relation and
three coefficients among αj ( j = 0~3) are determined based
on the continuity conditions of ε(z)F(z) and G(z) at two
interfaces z = 0 and d; i.e.,

εF
z –0

= εF
z +0

, G
z –0

= G
z +0

. (21)
We here introduce collisions between plasma and neutral
particles to avoid the singularity of F and G at z = zr , that is,
we replace ω2 by ω (ω + iν ) in ε2 and ε3. We thus obtain a
complex dispersion equation of TM surface modes as

I0 z d – t2 I1 z d

K0 z d + t2 K1 z d

=
I0 z 0 + t1 I1 z 0

K0 z 0 – t1 K1 z 0

, (22)

where zd = λ (d – zrc), z0 = λzrc, zrc = dω (ω + iν)/ωp0
2 and

t1 =
p1

λ tanh p1 h , t2 = –
p3

λ . (23)

In Fig.2, we show the real frequency and damping rate
of the TM surface mode as a function of (ωp0a/c)2, where h/a

= 0.2, d/a = 0.3, and (m,n) = (8,1) and we assume νa/c =
0.01N0/N*, N* being the density at (ωp0a/c)2 = 50. In Fig.3,
we also show the eigenfunction (G) of the surface mode for
(ωpea/c)2 = 50, where the other parameters are the same as
those in Fig.2. We can find that the eigenfunction of the
surface mode becomes peaked at the position zr of the plasma
resonance satisfying ω = ωpe (for ν = 0). We also find that
the profile of |F | is quite similar to that of |G | shown in Fig.2
in the plasma region, but F is discontinuous at z = 0 based on
eq.(21).

Finally, we note that we can obtain a finite damping rate
due to phase mixing effects caused by the plasma resonance
even for collision-free (ν = 0) plasmas. This problem is
analogous to that of shear Alfven resonance [6]. The analysis
for the case of ν = 0 will be discussed elsewhere.
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Fig. 3 Eigenfunction of G for TM surface mode.

Fig. 2 Dispersion relation of TM surface mode.


