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Full-Wave Maxwell Simulation on R-Mode Tunneling

in Electron Cyclotron Resonance Heating Study
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A new numerical scheme for electromagnetic wave tracing is presented in place of the standard ray-tracing
method in studies of electron cyclotron resonance heating. The new method solves the full-wave Maxwell equation,
and can take into account wave diffraction, mode conversion (or, cross-polarization scattering), and wave tunneling
across an evanescent region between resonance and cutoff layers, in addition to estimating energy absorption due to
wave-particle resonances. One and two-dimensional simulations of electromagnetic wave tunneling are also
demonstrated.
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The standard ray-tracing method [1] used in electron
cyclotron resonance heating analyses is based on geometrical
optics, and cannot treat wave diffraction, mode conversion,
and wave tunneling across an evanescent region between
resonance and cutoff. On the other hand, Maxwell equations
coupled with fluid equations can overcome the above
difficulty associated with the standard ray-tracing method.
However, wave-particle resonances such as cyclotron
resonance cannot be taken into account in the Maxwell and
fluid equations.

In this paper, we derive Maxwell and fluid equations in
which fundamental cyclotron and Landau resonances are
taken into account approximately to study electron cyclotron
resonance heating problems. The starting point is the Maxwell
wave equation given by
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where E is the electric wave field, ω wave frequency, c the
light speed, ε0 the permittivity of a vacuum, σ  the
conductivity tensor. In the limit of zero Larmor radius [1],
the conductivity tensor is given by,
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where ωpe is the electron plasma frequency, ωce the electron
cyclotron frequency, vte the electron thermal velocity, and k||

the parallel wavenumber. Here, we assume an infinite ion
mass in obtaining eq.(2), which is valid in the frequency
regime much higher than the ion cyclotron frequency. If the
imaginary parts in S, D, and P which show wave-particle
resonances are neglected, the wave equation (1) with (2) is
shown to be identical to the following equations [2,3]:
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∂t

B = –∇ × E , (3)
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ε0

J , (4)
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J × B0 , (5)

where B0 is an external magnetic field. Since eqs.(3)-(5) are
time-evolution equations, we can trace the temporal behaviors
of wave beams by solving them as an initial value problem.
That is, we can use eqs.(3)-(5) for wave tracing in place of
the ray-tracing equation. However, as they do not include
wave-particle interactions, they cannot be used for estimating
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power deposition in electron cyclotron resonance heating
analysis. In order to solve this problem, we consider finding
the time-evolution equations equivalent to eq.(1) with eq.(2)
including wave-particle resonances. If we suppose that the
imaginary parts of S, D, and P are constants in real space
even though they are actually functions of ω and k|| obtained
in Fourier space, we can take into account the imaginary parts
in S, D, and P by replacing eq.(4) with the following equation:
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where b = B0/B0 = bxx̂ + bz ẑ is assumed as a 2-d model of an
external magnetic field. Here, we also assume that k|| in S, D,
and P is determined based on the local dispersion relation
ε(k||, ω, x, z) = 0 for right-handed circularly polarized modes
(R-modes) in electron cyclotron resonance heating analysis.

In this case, the energy deposition into plasma due to
wave-particle resonances is calculated from
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which can be reduced to
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when bz = 1 and bx = 0. We see that the first and second
terms in eq.(9) denote the energy depositions due to Landau
and cyclotron resonances, respectively.

Hereafter, we show the simulation results regarding R-
mode tunneling in electron cyclotron resonance heating study
using eqs.(3), (5), and (6). We consider a simulation area
being square in (x, z). The R-mode which has a Gaussian
profile in the z-direction is excited on the boundary of x = 0,
and is launched in the positive x direction. We impose an out-
going wave condition for other three boundaries. In Fig.1, we
show the temporal behaviors of R-mode (Ey evaluated at the
beam-center in the 2D simulation) traversing an evanescent
region between resonance and cutoff layers, where are located
near x = 1600. We assumed ω = 28GHz, Te = 100eV, n0 =

1012cm–3, where a constant density and magnetic field profile
of a tanh-type are assumed. In Fig.2, we show the
transmittance T of R-mode traversing an evanescent region
between the resonance and cutoff layers obtained in 1(● ) and
2(■ )-dimensional simulations, where L is the distance from
the resonance to the cutoff layers, and k is defined by k = k(x
= z = 0). Here, the transmittance is defined by T =
Sx(x>cutoff-layer)/Sx(x<resonance-layer), where Sx is the x-
component of the Poynting vector and is evaluated at the
beam-center in the 2-d simulation. The solid line expresses T
= exp(–πkL), which is the theoretical expectation obtained in
the Budden’s problem [1]. We see that the numerical results
are in close agreement with the Budden’s expectation.
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Fig. 2 Transmittance T as a function of kL.

Fig. 1 Wave tunneling of R-mode traversing an evanescent
region near x = 1600 in the 2-d simulation.


