

Tsallis の非加法的統計力学と純電子プラズマ

阿 部 純 義(筑波大学物理学系)

Tsallis' Nonextensive Statistical Mechanics and Pure-Electron Plasma

ABE Sumiyoshi

Institute of Physics, University of Tsukuba, Ibaraki 305-8571, Japan (Received 31 October 2001)

Abstract

Boltzmann-Gibbs statistical mechanics is known to exhibit fundamental difficulties when a system under consideration contains long-range interactions. Tsallis' nonextensive statistical mechanics offers a consistent theoretical framework for treatment of such a system. In this article, an approach to statistically describing pure-electron plasma based on the Tsallis entropy is reviewed and related problems are discussed.

Keywords:

Tsallis' nonextensive statistical mechanics, pure-electron plasma, 2-dimensional Euler turbulence, maximum entropy principle, minimum enstrophy model

1. はじめに

Boltzmann-Gibbs 統計力学は,系の相互作用が短距離 力であること,記憶効果が無視できること,エルゴード 性や混合の条件がよく満たされていることを前提とす る.また,系の相空間も通常のEuclid的なものであって, 階層性などのような非自明な構造をもたない場合が想定 されている.さらに,熱力学的極限の存在が重要である が,このことは相互作用の短距離性の条件と不可分であ る.

しかしながら,近年複雑系に対する理解が徐々に進む とともに,これらの条件を仮定する Boltzmann-Gibbs 理論がチャレンジを受けるようになってきた.多くの複 雑系においては,部分が全体に本質的に結びついている ため,部分を取り出してその性質を調べることにより系 全体について知るという伝統的な還元主義的立場はうま く機能しないであろう(部分が全体に大きく影響すると いう点は長距離相互作用の系にも見られる特徴であるこ とに注意する[1]).また,複雑性はエルゴード性や混合 の条件がよく成立していると思われるカオス的な領域の 「縁」で発生する特徴でもあるため,これらの条件が十分 には満たされないことになる.また,複雑系に関連して 我々にとって特に興味深いのは,いわゆる準平衡状態あ るいは非平衡定常状態と呼ばれる状態である.このよう な呼ばれ方をする理由は,そのような状態が系の典型的 な微視的力学的時間スケールに比べて極めて長い時間保 たれることによる.これはある種の緩和状態と見なせる であろう.そのような状態に対して統計力学的にアプ ローチするためには,通常の理論の枠組みを拡張する必 要があるように思われる.そこで注目されている一つの 理論体系がTsallis 統計力学である[2,3].

Tsallis 統計力学の重要な特徴は、それが非加法的なエントロピー[4]に基づく最大エントロピー原理によって

author's e-mail: suabe@sf6.so-net.ne.jp

C ommentary

定式化され,理論自体がスケール不変性をもっていると いう点である. Tsallis エントロピーと呼ばれるこの量の 性質が、種々の非線形力学系(写像)に関してここ2、3 年よく研究されてきた(例えば、[5-7]とその中の参考文 **献**を参照のこと). これらの研究の動機は, 通常の統計的 なBoltzmann-Shannonエントロピーと力学系の Kolmogorov-Sinai エントロピーとの関係に対応するもの を Tsallis エントロピーに関して見出し、理論の基礎づけ を与えることにあった. そこで明らかになってきたこと は、Tsallis エントロピーの非加法性の度合いを表す指数 q が臨界アトラクタと呼ばれるカオスの縁にあるアトラ クタの多重フラクタル構造から決定されるということで あった[8]. これは,実際 Tsallis 統計力学が,開放複雑系 についてはその非平衡定常状態を,また閉じた非加法的 系についてはその準平衡状態を記述し得る理論であるこ と を示唆している. さらに, Tsallis エントロピーを最大 にするような確率分布形をもつ例が多く見つかっている ことも、この理論の現象論的な支持を与えている[2].

本稿では,純電子プラズマの物理における Tsallis 統計 力学の「可能な役割」について解説する.純電子プラズ マという系は電気的中性条件をもたないため Coulomb 力が遮蔽されずに長距離力として残り、統計力学的には 非加法的な系である.最近実験的研究が発展し、この系 の呈する興味深い振る舞いが直接観測されるようになっ た. それらの振る舞いの内で統計力学が対象とすべきも のは何か、というのは実は難しい問題である. Tsallis 統計力学によるアプローチが成功しているように思われ る部分も確かにあるが、一方そのような議論への批判も また存在する.本稿では、中立な立場を取りつつ純電子 プラズマと Tsallis 統計力学の問題を論じたい.以下にお いて、まず Tsallis 統計力学の理論形式を簡単に要約す る.次に,Tsallis 統計力学が純電子プラズマにどのよう に応用されたかを紹介する.この応用に対する批判の議 論も紹介する.

2. Tsallis 統計力学の基本的枠組み

Tsallis 統計力学の骨格をなすものは、Tsallis エントロ ピー[4]

$$S_q[p] = \frac{k}{1-q} \sum_{i=1}^{W} [(p_i)^q - p_i]$$
(1)

である.ここで, *pi* は系が*i* 番目の状態を取る確率であり, *W* は状態の総数である.*q* は正の実数で,エントロピー指数と呼ばれる.この量が「エントロピー」と呼ば

れる理由は、すべてのq > 0に対して凹性をもつこと、非 負であること、およびH定理を満たすことによる. $q \rightarrow 1$ の極限では、明らかに通常のBoltzmann-Shannon エントロピー $S[p] = -k \sum_{i=1}^{W} p_i \ln p_i$ に収束する、以下簡

単のためにBoltzmann 定数k が 1 という単位で議論を 進めることにする.

Boltzmann-Shannon エントロピーに対しては, その一 意性を保証する Shannon-Khinchin の公理系というもの があるが, Tsallis エントロピーに対する公理系も最近提 出された[9]. それは以下のようなものである.

- [I] $S_q[p] = S_q(p_1, p_2, ..., p_W)$ は すべての変数 $\{p_i\}_{i=1,2,...,W}$ について連続であり,等確率 $p_i = 1/W$ (*i* = 1, 2, ..., *W*)の場合に最大値をとる;
- [II] 複合系(A, B) について、その全エントロピーは $S_{q}(A, B) = S_{q}(A) + S_{q}(B|A)$

$$+(1-q)S_q(A)S_q(B|A)(2)$$

という合成則を満たす.ただし、 $S_q(B|A)$ はAに関する情報が与えられた場合のBの条件付きエントロピーである;

[III] $S_q(p_1, p_2, ..., p_W, p_{W+1} = 0) = S_q(p_1, p_2, ..., p_W)$. これらを満たす量 S_q が式(1)の Tsallis エントロピーで あることが証明される. Shannon-Khinchin 公理系は[II] で $q \rightarrow 1$ とした場合である.

[II]は重要である. もし部分系 A, B が統計的に独立 であるとすると, $S_q(B|A) = S_q(B)$ となり, したがって 擬加法性と呼ばれる関係式

$$S_q(A, B) = S_q(A) + S_q(B) + (1 - q) S_q(A) S_q(B)$$
(3)

が成立する.加法性が成り立つのは、明らかに $q \rightarrow 1$ の場合だけである.qの1からのずれは、 S_q の非加法性の度合いを表している.

少し抽象的な議論になってしまったが、Tsallis エント ロピーがしっかりした情報理論的な基礎をもっているこ とを感じ取っていただけたと思う.

さて,統計力学を構築するにあたり,物理量 Q の期待 値の定義を与えなければならない.これは一見自明のこ とのように思われるが,実は3年ほど前まで紆余曲折が あった.現在正しい定義と思われているのは,規格化さ れた q-期待値[10]というもので,

$$\langle Q \rangle_q \equiv Q_q = \sum_{i=1}^{W} P_i^{(q)} Q_i \tag{4}$$

Journal of Plasma and Fusion Research Vol.78, No.1 January 2002

$$P_{i}^{(q)} \equiv \frac{(p_{i})^{q}}{\sum_{j=1}^{W} (p_{j})^{q}}$$
(5)

のように与えられる.ここで, $P_i^{(q)}$ は p_i に付随したエス コート分布[11]と呼ばれる確率分布である. Q_i は確率変 数としての物理量Qのi番目の状態における値である.

規格化条件と物理量の q - 期待値に関する拘束条件の 下で Tsallis エントロピーを最大にするような確率分布 は、汎函数

$$\Phi_{q}[p;\alpha,\beta] = S_{q}[p] - \alpha \left(\sum_{i=1}^{W} p_{i} - 1\right) - \beta \left(\sum_{i=1}^{W} P_{i}^{(q)}Q_{i} - Q_{q}\right)$$
(6)

に対する停留条件から求められる.ただし、 α 、 β はLagrangeの未定乗数である. p_i についての変分を計算することにより、次のような規格化された定常確率分布[10]

$$p_{i} = \frac{1}{Z_{q} \left(\beta^{*}\right)} e_{q} \left[-\beta^{*} \left(Q_{i} - Q_{q}\right)\right]$$
(7)

が得られる.ただし

$$Z_{q}(\beta^{*}) = \sum_{j=1}^{W} e_{q} \left[-\beta^{*} (Q_{j} - Q_{q}) \right]$$
(8)

は、一般化された分配関数と呼ばれる. eq(x)は

$$e_q(x) = \begin{cases} [1+(1-q)x]^{1/(1-q)} & (1+(1-q)x > 0) \\ & (9) \\ 0 & (1+(1-q)x \le 0) \end{cases}$$

と定義される q-指数関数である.また,

$$\beta^* \equiv \frac{\beta}{\sum_{i=1}^{W} (p_i)^q} \tag{10}$$

このように,Tsallis 統計力学はエントロピーと期待値 の定義の拡張に対する2つの仮定からなる理論なのであ る.

ところで,式(7)は

$$p_i = \frac{1}{\tilde{Z}_q(\tilde{\beta})} e_q(-\tilde{\beta}Q_i)$$
(11)

という形に書き換えることができる.ただし,

$$\tilde{\beta} = \frac{\beta^*}{1 + (1 - q)\beta^*Q_q} \tag{12}$$

$$\tilde{Z}_{q}\left(\tilde{\beta}\right) = \sum_{i=1}^{W} e_{q}\left(-\tilde{\beta}Q_{i}\right)$$
(13)

である.式(11)の形の分布は,実は β を Lagrange 未定 乗数として,規格化されていないq-期待値すなわちエ スコート分布(5)の分母をもたない $(p_i)^q$ での期待値を 用いた場合[12]に得られるものと形式的には同じ形をし ている.次節で述べる純電子プラズマの解析には,規格 化されていないq-期待値を使った理論が用いられる.

Tsallis 分布について,以下の性質に注目する.まず *q* > 1 の場合,式(11)は

$$p_i = \frac{A}{(1+Q_i/Q_0)^s}$$
(14)

$$s = \frac{1}{q-1} > 0, \qquad Q_0 = \frac{s}{\tilde{\beta}}, \qquad A = \frac{1}{\tilde{Z}_q(\tilde{\beta})}$$
(15)

すなわち Zipf-Mandelbrot のベキ則的分布になっている. 一方0 < q < 1の場合には,定義式(9)からわかるように

$$Q_i^{\max} = \frac{1}{(1-q)\tilde{\beta}} \tag{16}$$

で切断される.また, $q \rightarrow 1$ の極限で一般化された分配 関数と Tsallis 分布とがそれぞれ通常の分配関数と指数 関数的分布に帰着されることは明らかであろう.

Tsallis 統計力学から熱力学を定式化することができる.物理量Qとして,系のハミルトニアンHを取る.その規格化されたq-期待値 $U_q = \langle H \rangle_q \epsilon$,一般化された内部エネルギーとする.ただし,q-期待値は最大 Tsallisエントロピー分布に関して計算する.このとき,

$$\frac{\partial S_q}{\partial U_q} = \beta \tag{17}$$

が成り立つことが示される.このことは, U_q とβが通常 の熱力学の場合とまったく同じように Legendre 変換の 変数の対であることを示唆している.しかし重要なの は,熱力学第ゼロ法則から定義される物理的温度は式 (17)の逆数ではない,という点である.温度の逆数は, 実は式(10)のβ^{*}である[13,14].この物理的温度を用い て熱力学的 Legendre 変換構造を確立することができる [15,16].それによって,非加法的な系に対する種々の熱 力学的関係式が導かれる.それらが通常の加法的な系に 対する熱力学的関係式と形式的に同じであることも示さ

S. Abe

れる.

Tsallisエントロピーとそれに基づく非加法的統計力学 に驚くほど多様な問題に適用されてきた.それは,自己 重力系から量子エンタングルメント,さらにはタンパク 質の構造の研究にまで及ぶ.包括的な論文リストは[17] から入手できる.

3. 純電子プラズマの統計力学に向けて

3.1 純電子プラズマ

電気的に中性でないプラズマは Coulomb の長距離力 が遮蔽されないため,通常の熱力学的極限が収束しない 非加法的な系である.したがって,中性プラズマとは異 なる統計的性質をもつと考えられる.正イオンを含まず 電子のみから成る純電子プラズマは種々の側面から興味 深く,目下その実験的研究が注目を集めている.

HuangとDriscoll[18]は, Fig.1に示されているような 装置で実験を行った.円筒形の導体壁(断面半径 $R_w =$ 3.05 cm,長さ 20 cm)の中を約 10⁻¹⁰ Torr の高真空にす る.一端のタングステンフィラメントから電子をたくさ ん注入する.典型的な密度としては、半径 2 cm 長さ 20 cm の空間に 1×10⁷ 個/cm³程度である.これらの電子に 円筒の中心軸に垂直な向きをもつ電場と中心軸方向の磁 場を作用させて閉じ込める.この外部からの電場と磁場 によって、電子は円筒内で乱流的なドリフト運動を行 う.円筒の他端に置かれたコレクタによって、電子を中 心軸からの距離に応じて計数する.中心軸方向に z 座標 軸を取ると、理想的な軸対称性をもつ場合の純電子プラ ズマの運動学は、案内中心の電子密度n = n(r,t)(r = (x, y))に対する方程式

$$\frac{\partial n}{\partial t} + \boldsymbol{v} \cdot \nabla \boldsymbol{n} = 0 \tag{18}$$

および電場のポテンシャル $\phi = \phi(\mathbf{r}, t)$ が満たすべき Poisson 方程式

$$\Delta \phi = 4\pi en$$
 (e は素電荷) (19)

によって決定される.ただし、ドリフト速度は

$$v = \frac{c}{B_z} e_z \times \nabla \phi = c \frac{E \times B}{B^2} (c は真空中の光速度) (20)$$

Fig. 1 Schematic of the experimental apparatus of Huang and Driscoll.

$$\frac{\partial \omega}{\partial t} + \boldsymbol{u} \cdot \nabla \omega = 0 \tag{21}$$

および流れ関数 $\phi = \phi(\mathbf{r}, t)$ の方程式

$$-\Delta \psi = \omega \tag{22}$$

と速度場の式

$$\boldsymbol{u} = -\boldsymbol{e}_z \times \nabla \boldsymbol{\psi} \tag{23}$$

と比較すると、電子密度と渦度、電場のポテンシャルと 流れ関数、という対応関係の下で両者が数学的にまった く同型であることがわかる.二次元流体の実際の実験に おいては、非粘性という条件を実現するのはあまり簡単 ではない.この意味で、軸対称性をもつ純電子プラズマ は、衝突による散逸効果はやはり避けられないものの、 ある程度の時間スケールでは良い近似で二次元 Euler 乱 流の実験の場を提供する.散逸が優勢になるのは、10³ ~10⁴ s 程度の長時間スケールである.

ドリフト速度(20)が $v = e_z \times \nabla \phi$ となるように磁場の 強さを規格化すると,式(18)は

$$\frac{\partial n(\boldsymbol{r},t)}{\partial t} + [n(\boldsymbol{r},t),h(\boldsymbol{r},t)] = 0$$
(24)

と書き換えられる. ここで, ハミルトニアンはポテン シャル

$$h = -\phi\left(\mathbf{r}, t\right) \tag{25}$$

であり, また Poisson 括弧は

$$\begin{bmatrix} a(\mathbf{r},t), b(\mathbf{r},t) \end{bmatrix} = \frac{\partial a(\mathbf{r},t)}{\partial x} \frac{\partial b(\mathbf{r},t)}{\partial y} - \frac{\partial a(\mathbf{r},t)}{\partial y} \frac{\partial b(\mathbf{r},t)}{\partial x} \quad (26)$$

で定義される.すなわち x と y は形式的に正準共役な変数になり, xy 平面は相空間と見なされる.式(24)を場の

Hamilton 形式で

$$\frac{\partial n (\boldsymbol{r}, t)}{\partial t} + \{H[n], n (\boldsymbol{r}, t)\} = 0$$
(27)

と書く. ここでのハミルトニアンは

$$H[n] = -\frac{1}{2} \int d^2 \boldsymbol{r} \ n \ (\boldsymbol{r}, t) \phi \ (\boldsymbol{r}, t)$$
$$= -\frac{1}{2} \iint d^2 \boldsymbol{r} d^2 \boldsymbol{r}' n \ (\boldsymbol{r}, t) G \ (\boldsymbol{r}, \boldsymbol{r}') \ n \ (\boldsymbol{r}', t)$$
(28)

であり、場の Poisson 括弧は

$$\{A, B\} = \int d^2 \mathbf{r} \ n \ (\mathbf{r}, t) \left[\frac{\delta A}{\delta n \ (\mathbf{r}, t)} , \frac{\delta B}{\delta n \ (\mathbf{r}, t)} \right]$$
(29)

で定義される.ただし,括弧[,]は式(26)で与えられて いる.式(28)中のGは Poisson 方程式(19)の Green 関数

$$\Delta \mathbf{G}(\mathbf{r},\mathbf{r}') = 4\pi\delta^{(2)}(\mathbf{r}-\mathbf{r}') \tag{30}$$

である.

このような理想化された系は無限個の Casimir 不変量 をもつ.実際, fを任意の解析的な関数であるとすると,

$$\int \mathrm{d}^2 \boldsymbol{r} f(n) \tag{31}$$

の形の量はハミルトニアン(28)との Poisson 括弧がゼロ になる.したがって,それを生成する量

$$\zeta_m = \frac{1}{m} \int \mathrm{d}^2 \boldsymbol{r} \left(\frac{n}{n_0} \right)^m \quad (m = 1, 2, 3, \cdots)$$
(32)

は、すべて不変量になる(ここで、n₀は被積分関数を無 次元にするための適当な基準分布であるが、以下簡単の ためにn₀=1として議論する). 5₁は全電子数であり、完 全に保存される量である.n は流体力学での渦度に対応 するが、渦度の自乗の体積積分(二次元流体では面積積 分)は、特にエンストロフィという名称をもつ.このた め純電子プラズマにおいても、52をエンストロフィと呼 ぶ.二次元 Euler 乱流に関しては、エンストロフィと呼 ぶ.これは、いわゆる渦の「選択的崩壊」の考えによれ ば、全エネルギーをほぼ一定に保ちながらエンストロ フィが小さなスケールに向かってカスケードする傾向に ある、ということに起因する[19].純電子プラズマにお いても、最小エンストロフィ模型を考えることは何らか の意味をもつと期待される.また現実には、m が大きく なると5mの不変性はより悪くなることが知られている. 散逸がない理想的な場合には、もちろんエネルギー (28)も不変量である.軸対称系でもう一つ重要な不変量 は、角運動量

$$L[n] = \int \mathrm{d}^2 \boldsymbol{r} \ r^2 n \ (\boldsymbol{r}, t)$$
(33)

である(*x* と *y* が正準共役であるため, *x* および *y* 方向の 運動量がそれぞれ – *y* と *x* になる).

3.2 実験結果

Huang と Driscoll の実験結果を Fig.2 に示す. 横軸は 円筒の中心軸からの距離 R を円筒半径 R_w で割って無次 元化した円柱座標の動径 $r = R/R_w$ であり,また縦軸は電 子の注入時刻t = 0から5 ms 経過した後での中心軸上の 電子数密度に関して規格化された電子数密度を表してい る.×と□は、それぞれ測定によって得られたt = 0での 初期分布およびt = 5 ms での分布のデータである.□で 表されている分布が、有限のrの値で切断されているこ とに注目していただきたい.

一方, Fig.3 は電子数密度の時間発展に関するデータ である. 横軸は電子注入時からの経過時間であり, 縦軸 は中心軸上での密度の値である. *t*=5 ms に代表される

Fig. 2 Measured radial profiles of the electron density of the initial (t = 0) and metaequilibrium (t = 5 ms) states with theoretical predictions of the minimum enstrophy model and the ordinary maximum entropy principle.

Commentary

Fig. 3 Time evolution of the measured central mean density n and the level of fluctuation \tilde{n} .

分布がいかに長時間生き残る準平衡状態を表しているか がわかるであろう.

Fig. 2に戻るが, このデータで注意すべき点は, □のプ ロットが振動的な振る舞いをしていることである. この 分布の振動は, プラズマ中に大きなスケールをもつコ ヒーレントなスパイラルが自発的に組織化されることに よると考えられる([20]とその中の参考文献を参照のこ と). このようなコヒーレントな構造自体は, 以下の我々 の統計力学的な考察の対象ではない. 我々が注目したい のは, むしろコヒーレントな構造をささえる, 背景にあ るランダムな電子の統計的性質である. しかし, 実際に はコヒーレントな構造と背景とが複雑に結合しているた め, 両者を分離して考えることは厳密には難しいであろ う.

3.3 最小エンストロフィ模型 vs 最大 Boltzmann-Shannon エントロピー原理

文献[18]において,著者達は実験的に観測された準平 衡分布を理解するために,二次元 Euler 乱流の研究でし ばしば用いられる最小エンストロフィ模型と通常の最大 エントロピー原理について検討した.

まず最大エントロピー原理では, 汎函数

$$\Phi[n;\alpha,\beta,\lambda] = S - \alpha\zeta_1 - \beta H - \lambda L \tag{34}$$

のnに関する停留条件を解くことになる.ここで、 Boltzmann-Shannon エントロピーS は

$$S = -\int \mathrm{d}^2 \boldsymbol{r} \, n \, \ln n \tag{35}$$

であり, α , β , λ は Lagrange 未定乗数, $H \ge L$ は式(28) と(33)で与えられている. 停留条件は

$$n \sim \exp\left(-\lambda r^2 + \beta \phi\right) \tag{36}$$

という形の解によって満たされる. 文献[18]の結論は,

この形の解では実験的に得られた準平衡分布を説明できない、ということであった。

そこで最小エンストロフィ模型が考えられた.この場 合は、汎函数

$$\Psi[n;\alpha,\beta,\lambda] = \zeta_2 - \alpha\zeta_1 - \beta H - \lambda L \tag{37}$$

の停留条件を求めることになる. ただちに

$$n + \beta \phi = \alpha + \lambda r^2 \tag{38}$$

が得られる.最小エンストロフィ模型の特徴は, $n \ge \phi$ がこのように線形の関係になるという点である.式(38) の両辺に二次元 Laplace 演算子を作用させて,さらに式 (19) ($e \equiv 1$)を用いれば,

$$\Delta n + 4\pi\beta n = 4\lambda \tag{39}$$

となる. この方程式の軸対称解は Bessel 関数を用いて簡 単に求められる. しかし, ここで大きな困難が生じる. そのような解nは, 円筒壁付近で負の値を取ってしまう のである. これはまったく受け入れ難い欠点である. こ の困難を回避するために,「制限された最小エンストロ フィ模型」なるものが提案された[18]. この方法は要す るに,分布がゼロ点を切るところでその分布を強制的に 切断する,というものである. こうして得られるのが, Fig.2の中の実線で示されている解であり,確かにデー タをよく再現しているように見える. しかし,分布の強 制的切断という処方はあまりに人為的過ぎるであろう.

3.4 最大 Tsallis エントロピー原理

Boghosian [21] は、0 < q < 1 なるエントロピー指数を もつ Tsallis 統計力学では上述のような分布の切断が必 然的に現われることに注意した (式 (16) 参照). そこで、 汎函数

$$\Phi_q[n;\alpha',\beta',\lambda'] = S_q - \alpha'\zeta_q - \beta'H_q - \lambda'L_q \tag{40}$$

で特徴づけられる最大 Tsallis エントロピー原理を考察 した.ここで,

$$S_q = \frac{1}{1-q} \int \mathrm{d}^2 \boldsymbol{r} \left(n^q - n \right) \tag{41}$$

$$\zeta_q = \frac{1}{q} \int \mathrm{d}^2 \boldsymbol{r} \ n^q \tag{42}$$

$$H_q = -\frac{1}{2} \iint \mathrm{d}^2 \boldsymbol{r} \, \mathrm{d}^2 \boldsymbol{r}' n^q \left(\boldsymbol{r} \right) \operatorname{G} \left(\boldsymbol{r}, \boldsymbol{r}' \right) n^q \left(\boldsymbol{r}' \right)$$
(43)

$$L_q = \int \mathrm{d}^2 \boldsymbol{r} \ r^2 n^q \tag{44}$$

である.式(41)は,式(1)の連続的な確率変数の場合への拡張になっている(ただし、簡単のために次元のスケールを1としている)."q次のエンストロフィ"ζ_qは、本質的にはTsallis エントロピーの一部分である.拘束される量がすべてTsallis 統計力学において基本的な量 n^q で書かれていることに注意する($H_q \ge L_q$ は「規格化されていないq-期待値」の形になっている.したがって第2節でふれたように、「規格化されたq-期待値」を用いた場合とはLagrange未定乗数の再定義と類似の処方によって関係づけられる.しかし、以下において未定乗数はパラメータなので、議論に実質的な違いは生じないであろう). 汎函数(40)のn に関する停留条件から

$$\frac{n^{1-q}-q}{q(q-1)} + \beta'\phi_q = \frac{\alpha'}{q} + \lambda'r^2$$
(45)

が導かれる.ただし、 ϕ_q は

$$\phi_q(\mathbf{r}) = \int d^2 \mathbf{r}' G(\mathbf{r}, \mathbf{r}') n^q(\mathbf{r}')$$
(46)

で定義される量であり,したがって方程式

$$\Delta \phi_q = 4\pi n^q \tag{47}$$

の解である.一般化された密度を

$$\rho_q(\mathbf{r}) = \int d^2 \mathbf{r}' \delta^{(2)}(\mathbf{r} - \mathbf{r}') n^q(\mathbf{r}') = n^q(\mathbf{r})$$
(48)

で定義すれば,式(45)と(46)はそれぞれ

$$\frac{\rho_q^{(1-q)/q} - q}{q (q-1)} + \beta' \phi_q = \alpha' + \lambda' r^2$$
(49)

$$\Delta \phi_q = 4\pi \rho_q \tag{50}$$

と書き換えられる.式(49)の両辺に二次元 Laplace 演算 子を作用させることにより、

$$\frac{1}{q (q-1)} \Delta \rho_q^{(1-q)/q} + 4\pi \beta' \rho_q = 4\lambda'$$
(51)

を得る.

さて、式(49)の一般化された密度に対する方程式で

$$q = \frac{1}{2} \tag{52}$$

とおくと, ρ_{1/2} は最小エンストロフィ模型の式 (38) と本 質的に同じ形になることがわかる.すなわち, ρ_{1/2} と *φ*_{1/2} が線形の関係になる. さらに,このとき最大 Tsallis エントロピー状態は,方程式(45)から

$$n \sim e_{1/2} \left(-\lambda' r^2 + \beta' \phi_{1/2} \right) \tag{53}$$

であり、分布の切断も自然に理解される.したがって、 n^{1/2}を基本量として用いたTsallis統計力学の枠組みから 最小エンストロフィ模型と同形の方程式が導かれ、しか も Huangと Driscoll が便宜的に導入した分布関数の切断 という人為的操作も不要になるわけである.ただし、実 験データと比べるべき量は、Tsallis 統計における ρ_{1/2} すなわち n^{1/2} となることに注意する.つまり、観測され る確率分布はエスコート分布なのである.

4. Brands-Chavanis-Pasmanter-Sommeriaの 批判

上述のBoghosianの議論は,最近批判的に検討された. Brands-Chavanis-Pasmanter-Sommeria (BCPS)[22]は, Miller[23]やその他の人々によって導入された二次元乱 流の渦の統計理論との類推を用いて批判を展開した.こ の理論では,基本的な量は渦度そのものではなく,以下 で定義されるような幾何学的密度である.まず,渦が存 在する(相)空間(x,y)を微小な正方格子に分割する.渦 度が σ 付近の値をもつような微小正方形の総数を $g(\sigma)$ とする(σ は,渦度レベルと呼ばれる).これに対応する 微小正方形の数密度を $n(\mathbf{r},\sigma)$ と書くと,明らかに

$$\int d^2 \boldsymbol{r} \ n \ (\boldsymbol{r}, \sigma) = g \ (\sigma) \tag{54}$$

である.また、流体が非圧縮性であることから

$$\int \mathrm{d}\,\sigma\,n\,(\boldsymbol{r},\sigma) = 1 \tag{55}$$

を各点 r で要請する. 渦度ω 自身は,

$$\omega(\mathbf{r}) = \int \mathrm{d}\,\sigma\,\sigma\,n(\mathbf{r},\sigma) \tag{56}$$

で与えられるとする.

二次元乱流と軸対称純電子プラズマとの同型性から, このような理論を後者に援用すると、考えるべき Tsallis エントロピーはもはや式(41)ではなく

$$\hat{S}_{q} = \frac{1}{1-q} \int d^{2}r \int d\sigma [n^{q}(\boldsymbol{r},\sigma) - n(\boldsymbol{r},\sigma)]$$
(57)

となる. ここでのσは, いわば"電子数密度レベル"と

いうことになるであろう. BCPS は,最も簡単な近似と して,2つのレベル σ =0,1という場合について考察し た. σ に関する積分を和に置き換えれば,式(55)に対応 して

$$n(r,0) + n(r,1) = 1$$
(58)

となり,また電子数密度レベルの一般化された密度に関 する(規格化されていない)q-期待値は

$$\nu_{q}(\boldsymbol{r}) \equiv p^{q}(\boldsymbol{r}) = \int d\sigma \, \sigma n^{q}(\boldsymbol{r}, \sigma) \Longrightarrow n^{q}(\boldsymbol{r}, 1) \qquad (59)$$

と書かれる.したがって,式(57)は

$$\hat{S}_{q} = \frac{1}{1-q} \int d^{2}\boldsymbol{r} [n^{q}(\boldsymbol{r},0) + n^{q}(\boldsymbol{r},1) - 1]$$
$$= \frac{1}{1-q} \int d^{2}\boldsymbol{r} [(1-p)^{q} + p^{q} - 1]$$
(60)

と表されることになる.同様に,式(42)-(44)も

$$\hat{\xi}_{q} = \frac{1}{q} \int d^{2} \boldsymbol{r} [(1-p)^{q} + p^{q}]$$
(61)

$$\hat{H}_{q} = -\frac{1}{2} \iint d^{2}\boldsymbol{r} d^{2}\boldsymbol{r}' \{ [1 - p(\boldsymbol{r})]^{q} + p^{q}(\boldsymbol{r}) \} \\ \times G(\boldsymbol{r}, \boldsymbol{r}') \{ [1 - p(\boldsymbol{r}')]^{q} + p^{q}(\boldsymbol{r}') \}$$
(62)

$$\hat{L}_{q} = \int d^{2} \boldsymbol{r} \ r^{2} \left[(1-p)^{q} + p^{p} \right]$$
(63)

となる.このような形式においては、汎函数

$$\hat{\mathcal{P}}_{q}\left[p;\hat{\alpha},\hat{\beta},\hat{\lambda}\right] = \hat{S}_{q} - \hat{\alpha}\hat{\zeta}_{q} - \hat{\beta}\hat{H}_{q} - \hat{\lambda}\hat{L}_{q}$$
(64)

の *p* に関する停留条件からでは、どのような *q* の値を 取ってみても、*p* のベキ乗とポテンシャル

$$\hat{\phi}_{q}(\boldsymbol{r}) = \int \mathrm{d}^{2}\boldsymbol{r} \,\mathrm{G}(\boldsymbol{r},\boldsymbol{r}') \{ [1-p(\boldsymbol{r}')]^{q} + p^{q}(\boldsymbol{r}') \} \quad (65)$$

との間に線形の関係を実現することは不可能であること は明らかであろう.すなわち,電子数密度レベルという ものを導入した最大 Tsallis エントロピー原理から最小 エンストロフィ模型に相当する分布を導くことはできな い.以上が,BCPSの批判の本質的な部分である.

5. おわりに

以上, Tsallis 統計力学に基づく純電子プラズマへのア プローチとそれに対する批判についてみてきた.この問 題の難しさは,結局は乱流の理解の難しさに帰着され, それは19世紀以来の課題なのである.純電子プラズマの 統計力学も,まだほとんどわかっていない,というのが 偽らざる現状である.

BCPS のように、二次元乱流での渦度レベルに対応す る量を導入した統計理論を用いると、Tsallis 統計力学も 満足すべき結果を与えないことは確かである.しかしな がら、渦度レベルを導入した二次元乱流の統計理論も、 実はそれほど成功し確立された理論ではないことに注意 する必要があるであろう.また式(58)からも明らかなよ うに、このアプローチでは確率変数が位置変数rではな く電子数密度レベルσになってしまっている.

Boltzmann-Gibbs 的なアプローチが定性的にも定量的 にもうまくいかないことはわかっている.この事実は, 通常エルゴード性の破れとして解釈されている.この意 味で,Tsallis 的なアプローチには依然として期待できる 面が残されている.純電子プラズマの統計力学が今後の 発展が待たれる重要な物理を含んでいるのは確かであ る.

参考文献

- [1] G. Nicolis and I. Prigogine, *Exploring Complexity: An Introduction* (W.H. Freeman, New York, 1989);
 (邦訳)G.ニコリス, I.プリゴジン「複雑性の探究」 安孫子誠也,北原和夫共訳(みすず書房, 1993).
- [2] 包括的な講議録を集めたものとしては, S. Abe and Y. Okamoto eds., *Nonextensive Statistical Mechanics and Its Applications* (Springer-Verlag, Heidelberg, 2001).
- [3]日本語による解説としては、阿部純義、月刊「数理科学」連載(2000年1~4月号).
- [4] C. Tsallis, J. Stat. Phys. 52, 479 (1988).
- [5] M.-C. Firpo and S. Ruffo, J. Phys. A 34, L511 (2001).
- [6] V. Latora, A. Rapisarda and C. Tsallis, e-print cond-mat /0103540.
- [7] V. Latora, M. Baranger, A. Rapisarda and C. Tsallis, Phys. Lett. A **273**, 97 (2000).
- [8] M.L. Lyra and C. Tsallis, Phys. Rev. Lett. 80, 53 (1998).
- [9] S. Abe, Phys. Lett. A 271, 74 (2000).
- [10] C. Tsallis, R.S. Mendes and A.R. Plastino, Physica A 261, 534 (1998).
- [11] C. Beck and F. Schlögl, *Thermodynamics of Chaotic Systems: An Introduction* (Cambridge University Press, Cambridge, 1993).
- [12] E.M.F. Curado and C. Tsallis, J. Phys. A 24, L69 (1991);
 Corrigenda 24, 3187 (1991) and 25, 1019 (1992).
- [13] A.K. Rajagopal, Nonextensive Statistical Mechanics and Its Applications, S. Abe and Y. Okamoto eds.,

(Springer-Verlag, Heidelberg, 2001) p.99.

- [14] S. Abe, Physica A **269**, 403 (1999).
- [15] S. Abe, S. Martínez, F. Pennini and A. Plastino, Phys. Lett. A 281, 126 (2001).
- [16] S. Abe, Physica A 300, 417 (2001).
- [17] http://tsallis.cat.cbpf.br/TEMUCO.pdf
- [18] X.-P. Huang and C.F. Driscoll, Phys. Rev. Lett. 72, 2187 (1994).
- [19] C.E. Leith, Phys. Fluids 27, 1388 (1984).
- [20] 際本泰士:日本物理学会誌 56,253 (2001).
- [21] B.M. Boghosian, Phys. Rev. E 53, 4754 (1996).
- [22] H. Brands, P.H. Chavanis, R. Pasmanter and J. Sommeria, Phys. Fluids 11, 3465 (1999).
- [23] J. Miller, Phys. Rev. Lett. 65, 2137 (1990).

ぁ ヾ țみ メl 阿 部 純 義

筑波大学物理学系助教授.1958年生 まれ.1986年日本大学大学院理工学研 究科博士課程修了,理学博士.フンボ ルト財団奨励研究員,日本大学理工学

部をへて,2001年8月より現職.主な研究分野は統計力 学および量子論の基本的問題.趣味は旅,テニス,読書 などいろいろ.近況:最近,大型スピーカーを入手,音 楽に耳を傾けつつアイラ産シングルモルトなどを少々.