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For the purpose of clarifying mechanism of local structure formations in magnetohydrodynamic (MHD)

turbulence, energy transfers among various scales and positions of magnetic/kinetic energies in the course of roll-

up processes of vortices are studied by direct numerical simulations (DNS) and orthonormal wavelet analysis. In

the previous study information on scales provided by the wavelet analysis are used to study scale-to-scale energy

transfers[1]. It has been found that large scale flow structures directly excite magnetic fields with various scales.

In the present study energy exchange between the kinetic and magnetic field energies are examined from the

points of views of local analysis of scale-location-to-scale-location energy transfers. Cone representation analysis

we have developed in Ref.[2] is extended to treat magnetic induction process. To depict the energy transfer cones

with the isosurfaces of the vorticity and current distributions simultaneously, spatial features of intense energy

transfer and its relation to the dominant field structures are clearly visualized.
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1. Introduction
Turbulent motions of plasmas are considered to play

key roles in magnetic confinement system. For exam-

ple, the plasma and energy transports across the magnetic

field lines are closely related to turbulence[3]. In terms of

wavelet analysis, Kishida et al. have found that local in-

teraction dominates the transfer process in fully developed

turbulence of a neutral fluid[4]. For MHD fluids, Alexakis

et al. have carefully conducted DNS studies and investi-

gated turbulent energy transfer processes between the ve-

locity and magnetic fields and between larger and smaller

scales [5] and similar analysis is carried out for Hall-MHD

case [6]. They found that nonlocal interaction is important

for the energy supplying process from the kinetic energy

to the magnetic one.

In our previous study we studied the wavelet scale-to-

scale interaction of nonlinear and induction terms. It has

been found that large scale flow structures directly excites

magnetic fields with various scales, in other words, non-

local interaction dominates excitation process[1]. Though

we only use the spatial scale information of wavelets in

that work, wavelet analysis strongly suggests that coherent

structures, i.e., rolling-up of large scale vortices are rele-

vant to the magnetic induction process.

In the present study we will attempt to use the loca-

tion information of wavelets and to analyze the relation be-

tween the coherent structures and magnetic induction pro-

cess. One of the advantages of the wavelet analysis, com-

pared with the Fourier one, is that it captures the informa-

tion of spatial scale and location simultaneously. Another

advantage of the analysis with discrete wavelet transform,

compared with the band-pass filter analysis such as Gabor

transform, is that it provides exact mode expansion of the
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basic equations without any redundancy or insufficiency

of modes. Thus wavelet representation of the basic equa-

tions is suitable for discussing the dynamics quantitatively

in terms of mode interactions as well as in relation to the

geometrical features of fields. Therefore wavelet analy-

sis is a useful tool for the analysis of each snapshot of the

fields in a time series. For rolling-up process of vortices

in a neutral fluid, we have already clarified that the nonlin-

ear energy transfer occurs actively around the large scale

vortices with the aid of dynamics visualization technique

which we called “cone representation”[2]. In the analy-

sis of MHD dynamics, similar visualization technique for

understanding dynamical process is needed.

2. Basic equations
Incompressible MHD equations in dimensionless

form are described as

∂u

∂t
= −(u · ∇)u − ∇p + j × B + ν∇2u, (1)

∂B

∂t
= ∇ × (u × B) + η∇2B (2)

∇ · u = 0 (3)

where B is the magnetic field (normalized by a represen-

tative value B0), j = ∇ × B is the current (normalized by

B0/L0; L0 is the characteristic length), u is the velocity

(normalized by the Alfvén speed VA = B0/
√
µ0niMi; µ0

is the permeability of vacuum, Mi is the ion mass and ni is

the ion number density, which is assumed to be constant for

simplicity), ν is the viscosity and η is the resistivity (nor-

malized by VAL0), and p is the pressure (normalized by

B2
0
/µ0). The pressure p is given as the solution of the Pois-

son equation which comes from the divergence of eq.(1).

Numerical methods, simulation parameters, the initial

condition of DNS and the snapshot of the velocity and

446

J. Plasma Fusion Res. SERIES, Vol. 9 (2010)

©2010 by The Japan Society of Plasma
Science and Nuclear Fusion Research

(Received: 31 October 2009 / Accepted: 1 April 2010)



magnetic fields we will analyze in the present study are

same as those in Ref.[1].

3. Wavelet Decomposition And Scale-location
Spectrum

Orthonormal divergence-freewaveletψ
jε�lσ
(�x) is given

by the unitary transform of complex helical waves and has

four kinds of parameters, j, �l = (lx, ly, lz), ǫ, σ each of

which implies spatial scale, location, anisotropy in wave

number space and helicity, respectively[7]. Though the

choice of wavelet is arbitrary in this method, we will use

Meyer’s wavelet here.

In the present study we use the scale and location in-

formation of wavelets and reduces the anisotropy and he-

licity information by taking summation with respect to ǫ

and σ:

f
j�l
(�x, t) :=

�

ε,σ

f̃
jε�lσ
(t) ψ

jε�lσ
(�x) (4)

where f stands for u and B and f̃
jε�lσ
(t) is wavelet coeffi-

cient which is given by f̃
jε�lσ
(t) :=

�

f (�x) · ψ
jε�lσ
(�x) d3�x. In

the following we call the field f
j�l
(�x, t) the scale-location

spectrum of f . Velocity and magnetic fields are decom-

posed into the scale-location spectrum as follows:

f (�x, t) =
�

j, �l

f
j�l
(�x, t). (5)

Since the wavelet is orthogonal, the kinetic and the mag-

netic energies are decomposed into the sum of the energy

of each scale-location spectrum, i.e.,

E( f )(t) =
�

j, �l

E
( f )

j�l
(t) (6)

where E
( f )

j�l
(t) := 1

2

�

| f
j�l
(�x, t)|2d3�x = 1

2

�

ε,σ | f̃ jε�lσ
(t)|2.

Substitutingwavelet scale-location expansion of u and

B into the basic equations Eqs.(1) and (2) and taking inner

product with each of the scale-location spectrum u
j�l
and

Bk�m, respectively, one obtains the energy budget equations

for the scale-location spectra of the kinetic and magnetic

energies as follows:

∂E(u)
j�l

∂t
=
�

k�m

�

u
j�l

�

�

�u
�

�

�uk�m

�

NL +
�

k�m

�

u
j�l

�

�

�B
�

�

�Bk�m

�

Lor

+
�

k,�m

�

u
j�l

�

�

�B0
�

�

�Bk�m

�

Lor + ν
�

k,�m

�

u
j�l

�

�

�∇2uk�m

�

, (7)

∂E(B)
k�m

∂t
=
�

j�l

�

Bk�m

�

�

�B
�

�

�u
j�l

�

ind +
�

j�l

�

Bk�m

�

�

�B0
�

�

�u
j�l

�

ind

+ η
�

j�l

�

Bk�m

�

�

�∇2B
j�l

�

(8)

where B0 = (0, 0, 0.1) is the uniform backgroundmagnetic

field and the brakets are defined as follows:

�

u
j�l

�

�

�u
�

�

�uk�m

�

NL:= −
�

u
j�l
· ((u · ∇)uk�m) d

3�x, (9)

�

u
j�l

�

�

�B
�

�

�Bk�m

�

Lor:=

�

u
j�l
· ((∇ × Bk�m) × B) d3�x, (10)

�

u
j�l

�

�

�∇2uk�m

�

:=

�

u
j�l
· (∇2uk�m) d

3�x, (11)

�

Bk�m

�

�

�B
�

�

�u
j�l

�

ind:=

�

Bk�m · ∇ × (u j�l
× B) d3�x, (12)

�

Bk�m

�

�

�∇2B
j�l

�

:=

�

Bk�m · ∇2B
j�l
d3�x. (13)

The pressure term vanishes because each of the scale-

location spectra is divergence-free.

The reason for the definition of the Lorentz force and

induction terms are discussed in detail in the next section.

4. Mathematical Foundation of Mode Decom-
position of Energy Transfer between The
Kinetic and Magnetic Energies

In this section we discuss the foundations of mode de-

composition of energy transfer due to the magnetic induc-

tion and the Lorentz force in order to justify the cone rep-

resentation of mode interaction, which is a visualization

technique we propose in this article.

Our discussion is based on the variational principle.

It is considered in detail that the work done on the mag-

netic field by the fluid motion. The basics of variational

principle for MHD fluids is discussed by Newcomb[8].

Since the magnetic field, exactly speaking, the mag-

netic flux density field is a differential 2-form[9], it is quite

natural to evaluate the transfer between the kinetic and

magnetic energies due to magnetic induction in terms of

the variation of differential 2-form.

In three dimensional space, assuming that the mag-

netic field B = ǫi jk Bi dx j ∧ dxk is a frozen-in 2-form, one

obtains the variation of magnetic field due to the virtual

displacement �x → �x + δ�x = �x + ε ξ(�x) as

δB = εLξB

=
ε

2
ǫi jk(ξ

m ∂B
i

∂xm
− Bm ∂ξ

i

∂xm
+ Bi ∂ξ

m

∂xm
) dx j ∧ dxk

(14)

where ε, ξ := ξi(∂/∂xi) and L are small parameter of varia-

tion, displacement vector field ofO(1) and the Lie differen-

tiation operator, respectively1. Therefore, the virtual work

done on the magnetic field is given by

δE(B) = δ

�

1

2µ
|B|2 d3�x = ε

�

1

µ
B · LξB d3�x

= ε

�

1

µ
B · (∇ × (ξ × B)) d3�x. (15)

1In the present study Einstein’s summation convention is used. Since

the magnetic field is divergence-free (∂Bm/∂xm) = 0, the Lie derivative

of magnetic field 2-form can be rewritten as LξB = ∇ × (ξ × B).
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Substituting the velocity field u into ξ of this expression,

we obtain the rate of change of the magnetic energy due to

the MHD fluid motion.

It should be remarked that one of the advantages of

using Lie derivative is that it is based on the Lagrangian

specification of fluid motion so that the mathematical ex-

pressions are applicable, for example, to the compressible

MHD case as well. The other advantage is that the ex-

pression Eq.(14) is physical, i.e., it is invariant under the

arbitrary change of local coordinate system, which may be

lost if the terms are split into two or more parts, for exam-

ple, ξm ∂B
i

∂xm and −Bm ∂ξ
i

∂xm + Bi ∂ξ
m

∂xm . This invariance allows us

to apply the formula to general curved coordinate systems,

which are often used in the numerical analysis of fusion

plasmas.

Since the integral δuE(B) :=
�

1
µ

B · (∇ × (u × B)) d3�x

is linear with respect to the velocity field, it is able to be

decomposed with respect to the scale-location spectrum of

u as follows:

δuE(B) =
�

j,�l

δu
j�l
E(B) (16)

where the components are given by

δu
j�l
E(B) :=

1

µ

�

B · (∇ × (u
j�l
× B)) d3�x. (17)

This integral implies the work per unit time done by the

u
j�l

components of fluid motion on the magnetic potential

energy.

One of the advantages of this definition is that inte-

gration by parts naturally gives the mode expansion of the

energy transfer due to the Lorentz force:

δu
j�l
E(B) = −1

µ

�

u
j�l
· ((∇ × B) × B) d3�x. (18)

This integral is the minus of the inner product of the

Lorentz force term j × B with the u
j�l

components of fluid

motion. That is, the integral implies the energy loss per

unit time of the ( j,�l) components of kinetic energy E(u) by

the Lorentz force:

δu
j�l
E(B) = −(δE(u)

j�l
)Lorentz f orce. (19)

In order to evaluate the rate of change of the (k, �m) compo-

nent of magnetic potential energy E(B), the work per unit

time δu
j�l
E(B) is decomposed as

δu
j�l
E(B) =

�

k,�m

δu
j�l
E

(B)

k�m
(20)

where the components are given by

δu
j�l
E

(B)

k�m
:=

1

µ

�

Bk�m · (∇ × (u
j�l
× B)) d3�x. (21)

This integral has its counterpart in the Lorentz force term

of the energy budget equation of E
(u)

j�l
:

δu
j�l
E

(B)

k�m
= −δBk�m

E
(u)

j�l
(22)

where δBk�m
E

(u)

j�l
:= 1

µ

�

u
j�l
· ((∇ × Bk�m) × B)) d3�x. This is

the reason why we have defined the mode interaction terms

as Eqs.(10) and (12), which satisfy detailed energy balance

relation
�

u
j�l

�

�

�B
�

�

�Bk�m

�

Lor = −
�

Bk�m

�

�

�B
�

�

�u
j�l

�

ind.

It should be emphasized here that, though we dis-

cussed here in terms of the wavelet scale-location spec-

trum, the discussion given here is also applicable to any

orthogonal decomposition of the velocity and magnetic

fields, for example, their spherical shell decomposition in

the wave number space.

5. Colored cone representation of the scale-
location-to-scale-location energy transfer

In the previous section we derived the energy trans-

fer between the kinetic and magnetic energies in terms of

wavelet scale-location spectrum. Since each of the ob-

tained integral contains the information on the locations

of interacting wavelet modes, visualization of the “energy

flow” from one wavelet site to another one become pos-

sible. By superimposing some graphical object which de-

picts information of locations and magnitude of “energy

flow” on some other physical quantities, for example, the

isosurfaces of the enstrophy or current density distribution,

one can intuitively grasp the spatial features of dynamics

given by Eqs.(1) and (2) and its relation to vorticity or cur-

rent.

We have developed “cone representation” of wavelet

scale-location-to-scale-location mode interaction in order

to analyze the nonlinear energy transfer in rolling-up mo-

tion of a neutral fluid [2]. The basic idea of the method is

now applied to the mode interaction associated with mag-

netic induction process.

A cone simultaneously depicts the following four

kinds of information which the scale-location-to-scale-

location energy transfer integral
�

Bk
−→
m

�

�

�B
�

�

�u
j�l

�

ind has: the

“position” of the energy donating mode, that of the energy

receiving mode, the “direction” of energy transfer and the

amplitude of the energy transfer (see Fig.1).

The center of base of a cone is assigned to the position

of energy donating mode. (In the following, the “position”

of the scale-location spectrum is defined by modulus max-

mum of wavelet.) On the other hand, its vertex is assigned

to that of energy receiving mode. Thus the cone indicates

the “direction of energy flow” from donating to receiving

modes as a whole.

The magnitude of “energy flow” is represented by its

base radius and color. The base radius of a cone is deter-

mined to be proportional to the absolute value of the trans-

fer integral. That is, it is normalized by the maximum value

of ensemble and the wavelet grid interval size as follows:

r = R

�

T
( j,k)

�l,�m

�

× L

2max{ j, k } (23)

where R is an appropriate function and T
( j,k)

�l,�m
is normalized
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transfer defined by

T
( j,k)

�l,�m
=

�

�

�

�

�

Bk−→m

�

�

�B
�

�

�u
j�l

�

ind

�

�

�

�

max

� �

�

�

�

�

Bk
−→
m

�

�

�B
�

�

�u
j�l

�

ind

�

�

�

�

� (24)

and has its value between 0 ≤ T
( j,k)

�l,�m
≤ 1. In the figures 3

and 4, the functional form of R is R(x) = x.

The activity of induction is represented by the colors

of cones. If magnetic field acquires energy by magnetic

induction, cones have such colors that are gradating from

red to yellow. If magnetic field loses energy, on the other

hand, the colors gradating from blue to green is painted

(see Fig.2).

When
�

Bk−→m
�

�

�B
�

�

�u
j�l

�

ind > 0, i.e., energy is transferred

from E
(u)

j�l
to E

(B)

k
−→
m
, the parameters of a cone are given by

base center: �x =
L

2 j

�

lx +
1

2
, ly +

1

2
, lz +

1

2

�

, (25)

vertex: �x =
L

2k

�

mx +
1

2
,my +

1

2
,mz +

1

2

�

, (26)

color:(R,G, B) =
�

1, 1 −C

�

T
( j,k)

�l,�m

�

, 0
�

, (27)

where C is color legend control function. In the figures

3 and 4, C is given by C(x) = min { 1, 3x } . Colors from
red (R,G, B) = (1, 0, 0) to yellow (R,G, B) = (1, 1, 0) are

assigned. The offset factor 1/2 are due to the position of

modulus maximum of Meyer’s wavelet.

When
�

Bk−→m

�

�

�B
�

�

�u
j�l

�

ind < 0, i.e., energy is transferred

from E
(B)

k
−→
m
to E

(u)

j�l
, the parameters of a cone are given by

base center:�x =
L

2k

�

mx +
1

2
,my +

1

2
,mz +

1

2

�

, (28)

vertex:�x =
L

2 j

�

lx +
1

2
, ly +

1

2
, lz +

1

2

�

, (29)

color: (R,G, B) =
�

0, 1 −C

�

T
( j,k)

�l,�m

�

, C

�

T
( j,k)

�l,�m

� �

. (30)

Colors from blue (R,G, B) = (0, 0, 1) to green (R,G, B) =

(0, 1, 0) are assigned.

6. Visualization of Flow and Current Struc-
tures and Energy Transfer

In this section we will make an attempt of the applica-

tion of cone representation visualization developed in the

previous section to the analysis of energy transfer in an

MHD system. In the present study we analyzed the same

velocity and magnetic fields as those presented in Ref.[1].

In the previous study we carried out the scale-to-scale

wavelet analysis of the energy transfer between the fields.

The analysis was based on the following energy transfer

integrals:

L jk :=

�

u j · (∇ × Bk) × Bd3�x, (31)

L
(0)

jk
:=

�

u j · (B0 · ∇)Bkd3�x, (32)

Fig. 1 Implications of each part of a cone representation of

wavelet scale-location-to-scale-location energy transfer.

Fig. 2 Color legend of cones that represents the modulus of the

integral
�

Bk�m

�

�

�B
�

�

�u
j�l

�

ind .

where u j and Bk are the wavelet scale spectra of u and B

defined by

u j :=
�

ε,�l,σ

ũ
jε�lσ
(t) ψ

jε�lσ
(�x), Bk :=

�

ε,�m,σ

B̃kε�mσ(t) ψkε�mσ(�x).

The relation between these integrals and the scale-location-

to-scale-location analysis in the present study is given by

the following decomposition relations:

L jk = −
�

�l

�

�m

�

Bk�m

�

�

�B
�

�

�u
j�l

�

ind, (33)

L
(0)

jk
= −

�

�l

�

�m

�

Bk�m

�

�

�B0

�

�

�u
j�l

�

ind. (34)

In figures 3 and 4, spatial distribution of inten-

sive magnetic induction
�

B4�m
�

�

�B
�

�

�u
4�l

�

ind and Alfvén waves
�

B4�m
�

�

�B0
�

�

�u
4�l

�

ind at the time t = 22 are depicted. Not all the

cones but the larger ones are depicted. Threshold is deter-

mined to include 50 per cent of the net enhancing/reducing
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Fig. 3 Simultaneous presentation of the spatial distribution of

vorticity (blue surfaces), current sheet (purple surfaces)

and active magnetic induction (colored cones). Mode in-

teraction between B4�m and u
4�l, i.e., cones correspond to

the integral
�

B4�m

�

�

�B
�

�

�u4�l
�

ind are depicted.

magnetic energy transfer. In these pictures, spatial scale

parameter of wavelets are fixed to j = 4, where the wavelet

scale spectrum of the magnetic energy has its peak [1].

Therefore it is expected that the typical spatial distribution

of magnetic induction is seen.

To understand the spatial features of flow field and

magnetic field, isosurfaces of the enstrophy density field
1
2
|∇ × u|2and the current one 1

2
|∇ × B|2are also depicted.

Threshold of isosurfaces are set to include 1 per cent vol-

ume of whole domain. As is discussed in Ref.[1], the flow

has several strong coherent vortices which are developed

around the initial shear layers. Strong current sheets are

formed around vortices and stretching flow region between

the vortices.

The cones for the magnetic induction appear around

the strong vortices and the current sheets (see Fig.3). This

result directly suggests that the coherent structure is the

promoter of the dominant magnetic induction. The cones

that represents the excitation/reduction of magnetic field

are interweaving each other. Similar fluctuating feature

was observed for the nonlinear interaction of rolling-up

vortices in a neutral fluid [10].

It is demonstrated that the cone representation can be

applicable to the analysis of magnetic induction term in

the magnetic energy budget equation (8), and that simul-

taneous displaying with other physical quantities such as

enstrophy density supports intuitive understanding of the

Fig. 4 Same as Fig. 3. Energy transfers due to the Alfvén wave
�

B4�m

�

�

�B0

�

�

�u4�l
�

ind are depicted.

physical process.

Two remarks should be made. First, since the data

presented here are obtained by the decomposition of L44

and L
(0)

44
scale-to-scale interactions which is one of the 81

number of components of Ljk and L
(0)

jk
, the information in-

cluded in these figures is a restricted portion of the whole

interactions. The other is that the information of such small

cones that are not depicted here should be compensated by

some other analysis, for example, statistics of the cones.

The analysis of transfers between other spatial scales and

statistical analysis of the ensemble of cones are now un-

derway.
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