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Wave Mode Couplings in a Free-Electron Laser with Axial Magnetic Field in 
the Presence of Self-Fields 
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The one-dimensional analysis of the collective interaction in a free electron laser (FEL) with combined helical 
wiggler and axial guide magnetic field in the presence of self-fields is presented. Contrary to the previous 
investigations relativistic terms to all orders of the wiggler amplitude is retained in the linearized equations. A 
dispersion relation for the unstable couplings of waves is derived. This dispersion relation is solved numerically to 
investigate the usual FEL instabilities with relativistic terms included. It was found that self-fields lower the 
maximum growth rate and narrows the width of the unstable spectrum. 
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1. Introduction 
The free-electron laser (FEL) theory in the collective 

or Raman regime relies on the unstable coupling between 
the radiation and the negative-energy space-charge wave 
[1-3]. Mehdian et al. devised a relativistic theory for an 
FEL and derived a dispersion relation (DR) [4]. Recently, 
Mohsenpour et al. solved the DR numerically and found 
additional couplings between waves [5].  

In this high-gain regime, due to the high density and 
low energy of the electron beam, an axial magnetic field is 
usually employed to focus on the beam. In such a 
configuration, equilibrium self-electric and self-magnetic 
fields, due to the charge and current densities of the beam 
have considerable effects on equilibrium orbits. It has been 
shown that self-fields can induce chaos in the 
single-particle trajectories in the vicinity of the 
gyroresonance. Freund et al. have calculated the first-order 
self-magnetic field, generated by the wiggler-induced 
transverse velocity [6]. Recently, the effects of self-fields 
on the stability of equilibrium trajectories have been 
studied in a FEL with a one-dimensional helical wiggler 
and an axial magnetic field [7-8].  

The purpose of the present investigation is to use a 
relativistic theory to derive a DR for the interaction of all 
the waves in a relativistic electron beam that passes 
through a one-dimensional helical wiggler magnetic field 
and an axial magnetic field in the presence of self field. 
This DR is solved numerically, for group I orbits, to study 
the relativistic effects on the FEL instability, i.e., the 
unstable coupling between the negative energy 
space-charge wave and the electromagnetic radiation. This 
DR may also be studied further to investigate the couplings 
between other wave modes in the system [5].  

 

 

2. Self-Field Calculation 
Consider a relativistic electron beam moving along 

the z axis of an idealized helical wiggler magnetic field 
described by  

� �zkzkB wwww sinˆcosˆ yxB �� ,              (1) 

and in the presence of an axial static magnetic field ẑ0B . 
Here, wwk ��2� is the wiggler wave number and w� is 
the wiggler wavelength. The transverse part of the 
steady-state helical trajectories of electrons, neglecting the 
self-fields of the beam, can be found as 

� �zkzkv wwww sinˆcosˆ yxv �� ,               (2) 
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where )( 00 cmBe ww ��� , )( 0000 cmBe z ��� , 
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��� cvvw� , 0m  is the electron rest mass, 

e  is the magnitude of the charge of an electron, and c is 
the speed of light in vacuum. 

The self-electric and self-magnetic fields are induced 
by the steady-state charge density and current of the 
non-neutral electron beam. In order to model these 
self-fields, we make the assumption of a homogeneous 
electron density profile, 
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where bn  is the number density of the electron and br is 
the beam radius. Solving Poison’s equation yields the 
self-electric field in the form 

� �yxrE ˆˆ2ˆ2 yxenren bbs ����� �� .   (5) 

The self magnetic field is induced by the steady-state 
current density of the electron beam and may be obtained 
by Ampere’s law,  
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where      
� �� �zyxJ ˆsinˆcosˆ ||vzkzkvne wwwbb ����       (7) 

is the beam current density. By the method of Ref. [8] sB  
may be found as  
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where � � 2124 menbb ��� � .  
By solving the equation of motion of an electron, in 

the presence of self-fields sE and sB , we will find the 

steady-state orbits  
� � zyxv ˆsinˆcosˆ ||0 vzkzkv www ��� ,            (9) 

where  
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Figure 1 shows the variation of axial velocity 
cv|| with normalized cyclotron frequency ckw0�  for 

group I � �||w0 vk�� and group II � �||w0 vk��  orbits. 
The parameters are 1

w cm2k �� , 312
0 cm10n �� , 

30 �� , and G1500Bw � .  

3. Dispersion Relation 
An analysis of the propagation of 

electromagnetic/electrostatic waves in the electron beam 
may be based on the continuity equation, 
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the relativistic momentum equation  
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and the wave equation 
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Here, n is the electron density, v  is the electron velocity, 

�  is the Lorentz factor corresponding to v , E  is the 
electric field, and B  is the magnetic field. With the 
unperturbed electron density 0n  taken to be independent 
of position and time, the electron and field variables may 
be expressed in the form 

nnn ��� 0 ,                             (14) 

vvv ��� 0 ,                            (15) 

EEE ��� 0 ,                            (16)  

BBB ��� 0 ,                            (17) 

RRR ��� 0 ,                            (18) 

where R  is the radial distance from the axis. 
The linearized equations for the continuity equation, 

the relativistic momentum equation, and the wave equation 
may be derived as 
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                                        (21) 
By introducing a new set of basis vectors 

� � 2ˆˆˆ yxe i�� , � � 2ˆˆˆ* yxe i�� , and ze ˆˆ �z , the 
unperturbed parameters can be written as  
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where ||0 vkvR ww�  is the radius of the equilibrium 
orbits of electrons and   
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The perturbed state is assumed to consist of a 
longitudinal space-charge wave and right and left 
circularly polarized electromagnetic waves, referred here 
as radiation, with all perturbed waves propagating in the 
positive direction. Accordingly, solution of the system of 
equations (19)-(21) may be assumed as 

zZLR vvv eeev ˆˆˆ * ���� ��� ,                 (27)  
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Fig.1  Axial velocity as a function of the 
       normalized axial magnetic field. 
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*ˆˆ eeB LR BB ��� �� ,                       (29) 
*ˆˆ eeR LR RR ��� �� ,                      (30) 

)](exp[~ tzkinn �� �� ,                     (31)  

)](exp[~ tzkivv RRR �� �� ,                  (32) 

)](exp[~ tzkivv LLL �� �� .                  (33)   

zv� and zE�  are analogous to n� ; RE� ,  RR� and 

RB�  are analogous to Rv� ; LE� , LR�  and LB�  are 
analogous to Lv� ; the wave numbers are related to by 

wR kkk �� ,                             (34a)  

wL kkk �� .                             (34b) 
Substituting Eqs. (27)-(33) in Eqs. (19)-(21) gives the 
expression for perturbed fields as follows: 
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and R� , L� , 1M , 2M , 1R� , 2R� , 3R� , 1L� , 2L� , 

3L�  are defined in the Appendix. Here, 0
RD , 0

LD , and 
0�  are the uncoupled dispersion relations, i.e., in the 

absence of the wiggler, for the right and left circularly 
polarized electromagnetic waves, and the space-charge 
wave, respectively.  Equations (35) and (36) show that the 
DR for the right and left waves alone, in the absence of the 
other two waves, are 

� � 0220 ��� cvDD wRRR � ,                  (41) 
� � 0220 ��� cvDD wLLL � ,                  (42) 

which indicate that the wiggler has direct effect on the 
right and left waves and the wiggler effect on their DRs are 
of the second order in the wiggler amplitude.  On the 
other hand, Eq. (40) shows that the DR for the 
space-charge wave in the absence of the right and left wave 
is 00 �� , which indicates that the wiggler has no direct 
effect on the space-charge wave.  The reason is that the 
transverse helical motion of electrons, due to the wiggler, 
has no effect on the longitudinal oscillations of the 
space-charge wave.   

The necessary and sufficient condition for a nontrivial 
solution consists of the determinant of coefficients in Eqs. 
(35)-(37) equated to zero.  Imposing this condition yields 
the dispersion relation  
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   (43) 

Equation (43) is the DR for coupled electrostatic and 
electromagnetic waves propagating along a relativistic 
electron beam in the presence of a wiggler magnetic field 
and an axial guide magnetic field.  This DR (43) will be 
solved numerically, in the next section, to investigate the 
relativistic and self-field effects on the FEL instability.   

 

4. Coupling Between Waves for Group I Orbits  
In the stable group I orbits the wiggler induced 

velocity wv is not so large, therefore, we should expect to 

observe the weakest couplings that can be induced by a 
relatively small wv .  In group I orbits with larger axial 
magnetic field and in group II orbits, near the resonance 
region with 7.1ckw0 �� , 

w
v  is larger and we should 

have additional couplings that are driven by the relativistic 
effects of 

w
v . The roots of the DR (43) are found 

numerically for group I orbits with 1.00 �� ckw .  The 
rest of the parameters are the same as in Fig. 1. The 
positive and negative-energy space-charge waves � ��Sc  

and the escape branch of right circular wave � �eR  are 
shown in Fig. 2.  There are two couplings between the 

eR  mode and the �Sc mode and are shown by dotted 
lines.  The wide spectrum coupling at large k  values is 
the well known FEL resonance. Solid lines show ck

w
�  

on the left vertical axis.  Circles show the normalized 
imaginary part of wave number wkkIm  for the two 
couplings in Fig. 2. In the group I orbits, induced velocity 

 
Fig.2  Coupling of right escape and negative space-charge 

waves for group I orbits.  
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wv  is low and therefore, only the well known FEL 
coupling between the right circularly polarized 
electromagnetic wave and the negative-energy 
space-charge wave is possible. In order to correct self-field 
analysis, it is convenient to introduce an effective wiggler 
magnetic field � � weffw BB �� , where �  is given by 

equation (26). In the absence of self-fields �  is unity. For 
group I orbits, �  is considerably below unity, therefore, 
the coupling agent becomes weak and maximum growth 
rate is decreased, from 11.0  to 08.0 , in comparison with 
the absence of self-fields. The width of the unstable 
spectrum in Fig. 2 is 15kk10 w �� , which it was 

5.13kk2.7 w ��  in the absence of self-fields [5]. 
Therefore, self-fields have lowered the growth rate, have 
made the unstable spectrum narrower, and have moved it 
toward the longer wavelengths.  

Due to the large density and low energy of the 
electron beam in this analysis, an axial magnetic field is 
employed to focus the beam against its self-fields. 
Moreover, since the beam is intense the electrostatic 
potential of the space-charge wave is not negligible 
compared to the pondermotive potential. Therefore, the 
FEL operates in the high-gain Raman regime and in the 
one-pass amplifier mode. The problem under consideration 
is in the linear stage of the FEL instability, which can be 
described by the parametric instability, i.e., Raman 
backscattering of the pump wave (wiggler), in the beam 
frame, into a forward scattered space-charge wave and a 
backscattered electromagnetic radiation. 

In order to check the validity of our results a one 
dimensional nonlinear computer simulation is performed 
with the same parameters as in Fig. 2. The simulation code 
is the same as in Ref. 9. The results show that the small 
signal domain occupies the entire injection length from 

0z �  to cm4.31z �  along the undulator. The linear 
domain starts from cm38z �  and ends at cm75z �  
and the radiation saturates at cm86z � . The growth rate 
in the linear domain is 107.0kkIm w � , which is in a 
very good agreement with our theory, without the 
self-fields, with 11.0kkIm w � . 

 
 
 

5. Appendix: Definition of Quantities 

The following quantities are used in equations (34)-

(36)  
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