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A compact stationary arc jet plasma generator was constructed for fundamental research. The plasmas were 
produced with two shapes of anode nozzle having different diverging angle. Characterization of plasma parameters 
in the expanding helium plasmas was performed using a high resolution visible spectrometer. The plasma density 
and its temperature around the anode nozzle exit were evaluated by analysis of the spectral intensity and profile. In 
addition, it was found that the anode with the large diverging angle provided a favorable condition to generate a 
strong non-equilibrium recombining plasma. On the other hand, the expansion dynamics from the anode nozzle was 
also examined by a shadow graph method. 
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1. Introduction 
Thermal plasmas have attracted a great deal of 

interest for applications in various engineering and 
scientific fields [1] such as welding [2], nanoparticle 
synthesis [3], and waste treatment [4].   

Thermal arc plasmas expanding through a converging 
and diverging nozzle with Laval or conical shape have also 
been expected to be one of the candidates for plasma 
thrusters [5]. For example, micropropulsion devices have 
been developed for orbital and attitude control of a small 
satellite so far. The small arc jet thruster has an advantage 
in its simple structure and compactness. In order to 
demonstrate the microplasma thruster, Horisawa et al 
examined the feasibility of DC arc jet operation at very 
low-power level [6]. However, as for characteristics of 
the plasma parameters only the gas temperature of 
propellant nitrogen gas was evaluated by spectroscopic 
observation. For the realization of the microthrusters, a 
comprehensive understanding of characteristics of the arc 
jet plasma generated is essential. 

On the other hand, atomic and molecular processes 
in high-density, low-temperature recombination plasmas 
have also been studied extensively in arc jet plasmas. 
Indeed, a stationary population inversion between excited 
levels of neutral helium (He) was observed [7, 8]. 
Moreover, a formation of inverted population of the 
excited states of He+ ion, which is capable of producing a 

lasing action for a vacuum ultraviolet (VUV) laser, has 
been demonstrated so far [9].  

The high-density recombining plasma is also expected 
to play an important role in radiation cooling of high-heat 
flux plasma in a divertor region of nuclear fusion device 
[10], where He ash associated with DT fusion reaction will 
be exhausted.  Since the divertor plate would be exposed 
to significant high-heat flux, several tens MW/m2, the 
reduction of the heat load into plasma facing components 
is an urgent issue [11, 12]. 

Recently, we have developed a compact stationary arc 
jet plasma source for the purpose of the fundamental 
research on arc jet thrusters and atomic and molecular 
physics in plasmas. In order to characterize the arc jet 
plasma and evaluate plasma parameters, the spectroscopic 
observations were made using a high resolution visible 
spectrometer. Moreover, the dynamics of the plasma 
expanding from the anode nozzle was investigated by a 
shadow graph imaging method. 

 

2. Experimental Setup 
Figure 1(a) shows the schematic diagram of an 

expanding arc jet generator developed in this study. 
Stationary He arc plasmas were generated between an 
anode (copper) and a cathode (cerium tungsten: Ce/W). 
Both electrodes were cooled by water to prevent them from 
being damaged due to high-heat flux arc. The arc discharge 
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current and voltage were up to 200 A and ~20 V, 
respectively. The electrode gap length was 1 mm and the 
pressure at the discharge section was 1~1.4 atm. The 
typical discharge current was 70 A and discharge pressure 
was ~1.2 atm. In general, the arc plasma chokes the anode 
nozzle (throat diameter: 1.0 mm�, constrictor length: 1.0 
mm) and a plasma plugging effect due to its strong 
viscosity results in a large pressure gradient between the 
arc discharge section and expansion region. According to 
the hydrodynamic theory, the high enthalpy gas generated 
by the arc discharge is converted into the directional 
kinetic energy due to an adiabatic free expansion into 
vacuum. Thus, the parallel velocity component with 
respect to the expansion axis increases, while the 
perpendicular thermal motion is frozen rapidly. 
Subsequently, the atmospheric thermal plasma having a 
temperature of a few eV and a density of 1016~1017 cm-3 
turns into a rapid cooling plasma. Since the structure of 
converging and diverging nozzle significantly influences 
the adiabatic expansion, two shapes of the anode nozzle 
were employed in this study. Figure 1(b) shows the 
schematics of the two anodes. Nozzle A had a diverging 
angle of 26° and exit diameter of 10 mm�, while for 
nozzle B smaller angle and diameter of 5° and 3 mm�, 
respectively. 

Spectroscopic observations were carried out using a 
high resolution visible spectrometer (f = 1 m, grating: 2400 
grooves/mm) with a charge coupled device (CCD) camera 
and a photomultiplier tube. The emission measurements 
were made from both perpendicular and parallel to the 

plasma expansion axis using an UV grade optical fiber. 
The resolution of the optical system was around 6 pm 
(the half width at half maximum: HWHM) for the CCD 
detection under an entrance slit width of 30 �m. Relative 
spectral sensitivity of the whole optical system was 
calibrated by a standard tungsten ribbon lamp. 

On the other hand, the dynamic behavior of high-heat 
flux plasma immediately after expansion from the anode 
nozzle was visualized by a standard shadow graph method 
using a He-Ne laser. We could not directly observe the 
anode nozzle exit itself from the perpendicular direction to  
the axis because of the restriction of the observation 
window. To this end, the arc discharge section was 
disconnected from the vacuum chamber and the imaging 
measurement was made only for the plasma expansion into 
the atmosphere. Since the pressure gradient between the 
plasma generation (1.2 atm) and expansion regions became 
small, the adiabatic expansion would, to some extent, be 
suppressed compared with that into vacuum. 
 
3. Results and Discussion 
3.1 Characterization of plasma parameters 

The relatively high temperature (a few eV) and high 
density of 1016~1017 cm-3 thermal plasmas were generated 
between the cathode and the anode electrodes due to the 
arc discharge. In order to characterize the plasma 
parameters of expanding arc jet at the initial stage, first 
the intense emission at the exit of nozzle B was observed 
from the parallel direction to the expansion axis. Figure 2 
shows the He I 667.8 nm line emission (transition: 2p 
1P-3d 1D) along the line of sight, indicating the prominent 
line broadening. Again, note that the instrumental width 
was estimated to be ~6 pm (HWHM). Generally, the 
spectral line profile is given by the Voigt function 
consisted of Lorentzian shape due to pressure broadening 
(resonance and the Stark) and Gaussian (the Doppler and 
instrumental width) [13, 14]. The best fitted Voigt 
function is also represented in Fig. 2 with a solid curve. 
In the present study, the resonance broadening can be 
neglected because the gas temperature was sufficiently 
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Fig. 2 Line spectrum of neutral He 667.8 nm at the exit of 

nozzle B. The Voigt fitting curve is also shown in a 
solid line. 

 
Fig. 1 Schematic diagram of the arc jet plasma source (a). 

The details of the anode nozzle A and B are shown in 
(b). 
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high [14]. Assuming that the Gaussian width (Ti=0.3 eV, 
see later) was 10 pm (HWHM), we obtain the Lorentzian 
width of ~13 pm (HWHM), corresponding to the electron 
density of ~2�1015 cm-3 at the nozzle exit [13]. For 
nozzle A, however, the spectral width was not broadened 
significantly, because the diverging angle and exit 
diameter of nozzle A were around three times larger than 
those of B. Thus, we estimate the plasma density by using 
an alternative method for nozzle A (see later). 

Figure 3 shows the spectra attributed to He I 2p 3P-nd 
3D and 2p 3P-ns 3S series observed for nozzle A at 45 mm 
downstream from the anode nozzle exit (perpendicular 
measurements to the jet axis). Line spectrum up to n=18 
and radiative continuum spectra were observed, 
indicating the typical characteristics of the 
non-equilibrium recombining plasma, in which the three 
body recombination dominates the other atomic processes 
[7, 8]. Although for nozzle B the emissions up to n=16 
were observable, the recombination continuum was 
absent. Moreover, for nozzle B the length of the plasma 
was over 700 mm and the column diameter was less than 
10 mm at 45 mm from the nozzle, while for nozzle A the 

plasma radiated the bright emission immediately after the 
expansion from the nozzle and its length and diameter 
were less than 300 mm and ~30 mm, respectively. The 
difference in emission spectra between the two nozzles 
could be ascribed to particle collisions of the expanding 
plasma with residual He gas [7-9]. Since the flow 
conductance for nozzle A was higher than that for nozzle 
B due to the large diverging nozzle angle, the ambient gas 
pressure in the expansion region was high compared with 
the value of nozzle B. For nozzle A, the residual He 
atoms, therefore, could make the ejected plasma cool 
more rapidly due to elastic and inelastic collisions, which 
is mainly responsible for the production of strong 
non-equilibrium recombination plasma. Although for 
nozzle B the recombining plasma could also be generated, 
the collisional relaxation time between the electrons and 
the other particles should be longer than that of nozzle A, 
resulting in the low degree non-equilibrium recombining 
plasma [15]. 

The electron temperature in the recombining phase 
was determined by the population densities of excited 
states [16] in which local thermodynamic equilibrium 
(LTE) can be established among highly-excited levels. 
Thus, the distribution of population density of n 3D levels 
follows the Boltzmann’s law. Figure 4 shows the 
Boltzmann plot evaluated from the 2p 3P-nd 3D line 
intensities for nozzle A (FIG. 3). Here, since the spectral 
shapes were broadened by the Stark effect, especially, for 
higher levels, the deconvolution procedure was necessary 
for an accurate estimation of the spectral intensity, yielding 
the relevant population density. The straight line gives the 
electron temperature of Te = 0.13 eV, indicating the 
production of low temperature plasma as expected. A 
similar electron temperature was also obtained for nozzle B, 
because the perpendicular temperature derived is 
considered to be determined by the hydrodynamic 
expansions rather than the processes on atomic physics. 

As mentioned above, the radiative recombination 
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Fig. 3 The Rydberg spectra of He I 2p 3P-nd 3D and 2p 
3P-ns 3S series and radiative recombination 
continuum spectra observed with nozzle A. 
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Fig. 4 The Boltzmann plot of 2p3P-nd3D series for nozzle A. 

The straight line represents the temperature of 0.13 eV. 
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Fig. 5 Recombination continuum spectra terminated to 2p3P 

(nozzle A). The straight line represents the electron 
temperature of Te=0.33 eV. 
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