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The deviation of the distribution functions from the Maxwellian due to the interaction with waves affects the
propagation and absorption of the wave itself. Therefore self-consistent analysis including the modification of
the momentum distribution function is required for quantitative analysis of wave heating and current drive. The
modeling code TASK was updated to describe the momentum distribution function of multi-species and the wave
dielectric tensor for arbitrary momentum distribution function. Numerical results of ICRF heating in tokamak
plasmas which generate energetic tail of distribution function are reported for minority heating and the second
harmonic heating.
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1. Introduction
Plasma heating and current drive by RF waves deform

the momentum distribution function of heated species.
The deviation of the distribution functions from the
Maxwellian affects the propagation and absorption of the
wave itself. Therefore self-consistent analysis including
the modification of the momentum distribution function is
required for quantitative analysis of wave heating and cur-
rent drive.

Self-consistent analysis of electron cyclotron current
drive (ECCD) using ray tracing method has already been
achieved by the integrated tokamak modeling code TASK.
The purpose of this study is to develop full wave analysis
of ICRF simulation including the deformation of distribu-
tion function. In this paper, results of ICRF heating analy-
sis in tokamak plasma using the integrated code TASK are
reported.

The full wave component TASK/WM [1] calculates
the wave electric field by solving Maxwell’s equation in-
cluding the plasma dielectric tensor. The bounce-averaged
Fokker-Planck component TASK/FP analyze the time evo-
lution of the momentum distribution functions for elec-
trons and ions by solving the Fokker-Planck equation in-
cluding the quasi-linear diffusion terms calculated from
the wave electric field. The dielectric tensor compo-
nent TASK/DP calculates the plasma dielectric tensor by
numerically integrating the momentum distribution func-
tions. By repeating this cycle, we can describe the time
evolution or the steady state of the wave heating and cur-
rent drive.

In the case of minority heating by ICRF waves, en-
ergetic minority ions are generated at the fundamental cy-
clotron resonance and a high-energy tail of the minority
momentum distribution function which affects the absorp-
tion of the ICRF waves is formed. In the case of second
cyclotron harmonics, a small fraction of ions is strongly
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accelerated and stronger energetic tail is generated. In both
cases, the electron momentum distribution function is flat-
tened in the vicinity of the parallel wave-particle resonance
and the modification leads to the power absorption through
the Landau damping or TTMP as well as the current drive.

We have carried out numerical analysis of ICRF heat-
ing and confirmed that the modification of momentum dis-
tribution function from Maxwellian affects the deposition
to ions. Both the cases of minority heating and second har-
monic resonance heating are reported.

2. Model of Fokker-Planck analysis
First, we describe the Fokker-Planck module,

TASK/FP, which solves the bounce averaged Fokker-
Planck equation.

∂ fs
∂t
= E( fs)+C( fs)+Q( fs)+L( fs)+S ( fs) (1)

where the terms E, C, Q, L, and S are acceleration
term by the toroidal DC electric field, collision term due
to Coulomb collision, quasi-linear diffusion term due to
wave-particle interaction, spatial diffusion term and source
term, respectively. fs denotes the momentum distribution
function for species s, fs(p‖, p⊥,ρ, t) where p‖ and p⊥ are
the parallel and perpendicular momentam at the minimum
magnetic field point on the magnetic surface and ρ is the
normalized minor radius of the surface. L and S terms are
not included in the present analysis.

FP module includes the trapped particle effect by
bounce averaging with zero banana width. This module
can calculate time evolution of distribution functions not
only for mainly heated species but also for the other species
all together.

FP modules solve the Fokker-Planck equation as a dif-
fusion equation.

∂ fs
∂t
= −∇p ·

(
−↔D · ∇p fs+FFF fs

)
(2)
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where
↔
D and FFF are diffusion and friction coefficients. Each

coefficients are composed of several terms, e.g. [2]
↔
D =

↔
Dcl+

↔
Dql

FFF = FFFcl+FFFdc.

The subscripts “cl”, “ql” and “dc” denote collision, quasi-
linear and DC electric field acceleration, respectively.

Several models for Coulomb collision terms (
↔
Dcl and

Fcl) are available in the FP module. The linear collision
model [2] assumes the Maxwellian distribution for field
particles. It doesn’t conserve the total momentum or en-
ergy and is not adequate when various heating processes
occur simultaneously. In the non-linear collision model
[2-4], the distribution functions of field particle species are
expanded by the Legendre polynomials Pl(cosθ) as,

fs(vvvs) =
L∑

l=0
f (l)
s (vs)Pl(cosθs) (3)

where θ is a pitch angle at the minimum magnetic field
point on the magnetic surface. By integration over vs, we
can calculate the non-linear collision terms. If we keep the
lowest order term (L = 0), the non-linear term conserves
only the particle number. The non-linear Coulomb colli-
sion model satisfies momentum (L ≥ 1) and energy (L ≥ 2)
conservation. Relativistic effect is also included according
to the formulation by Braams [4].

The quasi-linear term is purely diffusive. Expression
of the quasi-linear diffusion term is given by [2]

↔
Dql =

∑
n

π

2
q2

s

m2
s
δ
(
ω− k‖v‖ −nΩs/γ

)
aaa∗naaan (4)

where

aaan = Θn
k‖
ω

[(
ω

k‖
− v‖

)
vvv⊥+ v⊥vvv‖

]

Θn =
Ew+Jn−1+Ew−Jn−1√

2
+
v‖
v⊥

JnEw‖

when ωs, k‖, k⊥, Ω, γ are the wave frequency, the parallel
and perpendicular wave numbers, the cyclotron frequency
and the relativistic factor, respectively. Jn is the Bessel
function Jn(k⊥v⊥/Ωs). Wave electric field Ew± and Ew‖
are calculated by the full wave analysis code TASK/WM.

3. Verification of the non-linear collision term
To numerically verify our model, we compare the

electrical conductivity calculated by our model with that
in Karney’s previous work [2]. These are tabulated in ta-
ble I (non-relativistic) and II (relativistic). In all cases,
we use non-linear electron electron collision term and the
electron-ion collision operator is given by an approximate
formula [2].

In table I, we used non-relativistic, non-linear (mo-
mentum conserving) model for electron-electron collision

model Zi = 1 Zi = 2 Zi = 5 Zi = 10
linearized [2] 7.429 4.377 2.078 1.133

our model 7.341 4.310 2.038 1.108

Table I The electrical conductivity for various ion charge. The
conductivities are normalized to neq2

e/meνte.

model Zi = 1 Zi = 2 Zi = 5 Zi = 10
linearized [2] 7.160 4.180 1.963 1.064

our model 7.250 4.283 2.035 1.111

Table II The electrical conductivity for various ion charge. The
conductivities are normalized to neq2

e/meνte.

and approximate model for electron-ion collision with the
electric field E = 0.001 V/m. Table II shows electrical con-
ductivity for the relativistic model with E = 0.001 V/m and
Θ = Te/mec2 = 0.02. Since the agreement in the both ta-
bles is fairly good, validity of conductivity of our model is
confirmed.

4. Calculation results
We carried out numerical analysis of ICRF heating in

two cases. In these analyses, we used the parameters in
table III simulating JT-60U like tokamaks.

major radius R0 3.5m
minor radius a 0.98m
elongation κ 1.28

triangularity δ 0.31
magnetic field on axis B0 3.3T
temperature on axis T0 4.0keV

temperature on surface Ts 0.4keV
density on axis n0 0.3×1020/m3

density on surface ns 0.3 ×1019m3

minority ion ratio 5%
frequency fRF 55.0MHz

toroidal mode number nφ 16 ∼ 24
number of poloidal mode Nθ 32 ∼ 64

Table III Plasma parameters

4.1 Minority heating
First, we studied the case of ICRF heating of plas-

mas composed of two ion species, majority deuteron 95%
and minority proton 5%. In this analysis, the total heat-
ing power is 1.50 MW, and the wave absorption power
to electron, deuteron and proton are 0.37, 0.07 and 1.06
MW. In this plasma, minority ion is mainly accelerated by
the ion cyclotron fundamental resonance. Fig.1 (a) shows
radial profile of wave absorption by mostly protons, and
(b) shows the profile of the wave deposition power den-
sity to protons on the poloidal cross section. Most of the
wave power is absorbed by the minority ions on funda-

1126

H. Nuga and A. Fukuyama, Self-Consistent Analysis of Fundamental and Higher Harmonic ICRF Heating in Tokamak Plasmas



3.0 3.5 4.0 4.5
R [m]

0

-1

1

power absorption for H

200

  0

400

  0 0.5 1.0
ρ

p
o
w

er
 d

en
si

ty
 [

a.
u
.] H

(a) (b)

Fig. 1 (a) Radial profile of wave absorption calculated by WM.
(b) Wave absorption profile for proton on the poloidal
cross section.
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Fig. 2 Electron distribution function for parallel and perpendic-
ular 1D momentum space at various radial positions.
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Fig. 3 Deuteron distribution function for parallel and perpendic-
ular 1D momentum space at various radial positions.
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Fig. 4 Proton distribution function for parallel and perpendicu-
lar 1D momentum space at various radial positions.

mental absorption resonance surface. Figs.2 - 4 indicate
the distribution function in the parallel (a) and perpendic-
ular (b) momentum direction. Fig.2 and 3 show that the
electron and deuteron distribution functions are isotropic,
while Fig.4 indicates that proton distribution function is
anisotropic. Radial profiles of wave power absorption and
power transfer through collision at 5 msec after the onset
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Fig. 5 (a) Radial profile of the wave power absorption. (b) Ra-
dial profile of the power transfer through collision.
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Fig. 6 Contour of proton distribution function at ρ = 0.35 in 2D
momentum space.

of wave heating are shown in Fig.5. From this figure, we
confirmed that minority ions are heated by ICRF waves,
while majority ions are heated by collisions with minority
ions. The collisional power gain of deuteron almost bal-
ances with the collisional power loss of proton. On the
other hand, electrons are rarely heated by waves and colli-
sion except at ρ = 0.35 where electrons are slightly heated
by collisions with minority ions. From Fig.5, we see that
the power absorption from wave is greater than the power
loss due to collisional power transfer to the minority ions.
The difference of the power is attributed to the increase of
the tail ions because the tail formation is not saturated yet.
We note that the electrons absorb the wave power at the
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Fig. 7 Electron distribution function for parallel and perpendic-
ular 1D momentum space at various radial positions.0 20 40 60 80 0.30 0.40 0.500.600.70-12-8-40
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Fig. 8 Deuteron distribution function for parallel and perpendic-
ular 1D momentum space at various radial positions.

Alfvén resonance near the plasma surface due to the rela-
tivity large k‖ for nφ = 24.

Fig. 6 is a contour of minority ion distribution func-
tion at the normalized minor radius ρ= 0.35 in 2D momen-
tum space. Minority ions are heated strongly at ρ = 0.35 as
depicted in Fig.5. Contour of the distribution function in
Fig. 6 has two tips. These strongly accelerated pitch an-
gles are the result of trapped particle effect. When reflect-
ing point of a trapped particle coincide with a cyclotron
resonance surface, this strong acceleration occurs, because
such trapped particles stay at the resonance surface longer
than passing particles. The pitch angle is π/2 when the res-
onant surface is tangential to the magnetic surface(ρ∼ 0.3).
In the present calculation, however, since the wave ampli-
tude on the resonance surface is larger on the outer mag-
netic surface(ρ= 0.35), the accelerated pitch angle deviates
from π/2.

4.2 Second harmonic resonance
Next, the case of deuterium plasma was analyzed. In

this plasma, ions are accelerated by the second harmonic
resonance of 55 MHz ICRF wave. In the present analy-
sis, the wave absorption power to electron and deuteron
are 0.19 and 1.45 MW. Second harmonic resonance de-
forms the distribution function more strongly than the fun-
damental resonance. Figs.7 and 8 indicate the distribution
function in the parallel (a) and perpendicular (b) momen-
tum directions at 10 msec after the onset of wave heating
. From Fig.7, we see that the electron distribution function

stays isotropic. On the other hand, Fig. 8 shows strong
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Fig. 9 Contour of the deuteron distribution function at ρ = 0.33
in 2D momentum space.

deformation of the deuteron distribution function.
In the minority heating case, deuterons were heated

by collision with wave heated minority ions. By contrast,
in the second harmonic case, deuteron is heated by di-
rect wave absorption. Since the absorption rate increases
with the increase of p⊥, strong tail is generated in the per-
pendicular direction and the distribution function becomes
anisotropic.

Fig.9 shows the deformed deuteron distribution func-
tion in 2D momentum space at ρ = 0.33, where the wave
absorption has a peak value. From Fig.9, we see that
the deuteron distribution function has two tips as same as
Fig.6.

5. Conclusion
We have updated the wave related modules in the

TASK code for self-consistent analysis of ICRF heating
in tokamak. The present numerical analysis describes the
tail formation of the resonant ion momentum distribution
function. We confirmed that deformation of distribution
function occurs when the plasma is heated by waves. Self-
consistent analysis required for quantitative analysis of
wave heating and current drive is under way.
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