
author’s e-mail: nishimura.shin@lhd.nifs.ac.jp 

Effects of Configuration Control on the Neoclassical Viscosity in 

Heliotron-J 
 

Shin NISHIMURA
a
, Yuji NAKAMURA

b
, Gen MOTOJIMA

a
, Hiroyuki OKADA

c
,  

Shinji KOBAYASHI
c
, Satoshi YAMAMOTO

d
, Kazunobu NAGASAKI

c
,  

Kiyoshi HANATANI
c
, Katsumi KONDO

b
, Tohru MIZUUCHI

c
, Fumimichi SANO

c
 

 
a
 National Institute for Fusion Science, Oroshi-cho 322-6, Toki, 509-5292, Japan 

b
 Graduate School of Energy Science, Kyoto University, Uji, 611-0011, Japan 

c
 Institute of Advanced Energy, Kyoto University, Uji, 611-0011, Japan 

d
 Pioneering Research Unit for Next Generation, Kyoto University, Uji, 611-0011, Japan 

 

The three mono-energetic viscosity coefficients are investigated in Heliotron-J as a benchmarking of the analytically 

approximated formulas of the neoclassical viscosities. One purpose is to validate an analytical theory for the 

ripple-trapped/untrapped boundary layer in the velocity space even for configurations with arbitrary magnetic field 

Fourier spectra and large rotational transform per toroidal period. Therefore dependence of the non-diagonal coefficient, 

which determines spontaneous parallel flows such as the bootstrap current, on configurations, collisionality, and radial 

electric fields is investigated in detail. 
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1. Introduction 

  In a hierarchical description of toroidal plasmas [1], 

neoclassical transport theory determines 

quasi-steady-state components of gyro-phase-averaged 

distribution functions by Coulomb collisions. Various 

projects for integrated simulation applying this 

hierarchical description for helical and stellarator 

devices are now conducted [2]. A most important 

requirement for the “layer” of the neoclassical part will 

be its covering area (plasma parameter range and 

variation of configurations) and a consistency with other 

layers rather than accuracy in a specific problem in a 

limited parameter range and in limited configurations. 

Motivated design activity of advanced helical devices, 

experimental studies on neoclassical flows, a framework 

for the neoclassical transport in general non-symmetric 

toroidal plasmas, which is favorable for this hierarchical 

description, has been constructed and tested [3,4]. It is 

important not only for the helical/stellarator devices but 

also for tokamaks since the partially broken 

axisymmetry due to the MHD activity causing 

additional neoclassical effects is recently considered to 

be important in relation to the rotational stabilization of 

the resistive wall mode, and the island physics [4-6]. In 

this unified theory [3,4], three mono-energetic viscosity 

coefficients M*(parallel viscosity against flows), 

N*(driving force for parallel flows), and L*(radial 

diffusion) are required. For practical applications of this 

theory such as the integrated simulation system [2] and 

configuration optimizations (for e.g., STELLOPT code 

[7], which is now applied for designing trim coils in the 

Heliotron-J [8]), faster and easier methods to obtain the 

three coefficients are required. The drift kinetic equation 

(DKE) giving them is described in the 3 dimensional 

(3-D) phase space (poloidal and toroidal angles �, �, and 

the pitch angle �) [3,4]. Various bounce- or 

ripple-averaging methods, which reduce this dimension 

substantially, are developed for handling the 

bounce-averaged bounce center motions of the 

ripple-trapped particles [9,10] and these methods also 

should be used appropriately in the unified theory and 

the integrated simulation including it. For the 

non-bounce-averaged effects, analytically approximated 

formulas, which are applicable to arbitrary magnetic 

field (B) spectra, are derived [11,12]. However, there is 

the ripple-trapped/untrapped boundary layer in the 

pitch-angle-space, which causes a coupling effect 

(collisional trapping/detrapping) between the 

bounce-averaged bounce center motions and the 

untrapped particles’ non-averaged guiding center 

motions. As neoclassical predictions due to the break of 

symmetry, dependence of plasma currents on radial 

electric fields Es����/�s is known [13] in addition to 

well-known spontaneous determination of the Es by the 

ambipolar condition. Exactly speaking, there are two 

mechanisms for this dependence. One mechanism that 

was firstly pointed out by Nakajima, et al.[13] is the 

collisionality dependence of the non-diagonal 
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coefficient N*, and the other is the dependence of this 

coefficient itself on the Es. The latter dependence is 

caused by the boundary layer effect that can be 

calculated by a complementary use of the analytically 

approximated solution for the boundary layer structure 

[14] and the bounce-averaging technique giving the 

boundary condition for this solution [12]. Although this 

analytical solution is obtained assuming simple B-field 

spectra without higher non-axisymmetric harmonic 

modes n�2 in the Fourier expansion 

B = Bmncos(m� � nN� )
mn

�  and assuming small rotational 

transform per toroidal period �/N, it was confirmed 

recently in the National Compact Stellarator Experiment 

(NCSX) [15] and the Quasi-poloidal Stellarator (QPS) 

[7,16] that we can apply this solution for more general 

toroidal configurations [17]. For a purpose to validate 

this boundary layer theory in cases with large �/N values, 

however, the �/N value in the QPS was not so large even 

if its toroidal period number N=2 is the smallest one in 

previously designed devices. Here we present recent 

calculation examples in the Heliotron-J (H-J)[8] as one 

of recently designed devices with small toroidal period 

numbers. Especially for future studies of radial electric 

field effects on the plasma flows, the non-diagonal 

coefficient N* is investigated in detail in this devices 

with larger �/N values. 

 

2. Magnetic Field in Cases with the Bumpy 

Ripple Control 

  The H-J [8,18-20] is a helical axis heliotron with a 

helical coil with the poloidal and toroidal mode numbers 

of (L,N)=(1,4), and major and minor radii of R=1.3m and 

a=0.16m. In a viewpoint of a technical interest on the 

analytical calculations partly including a high aspect 

ratio approximation �B/B<<1, its aspect ratio R/a is not 

so small compared with those of the Large Helical 

Device (LHD, a planer axis helical heliotron with 

R/a=6.5, N=10) [2, 21], the NCSX (a 

quasi-axisymmetric torus with R/a=4.4, N=3)[15], and 

the QPS (a quasi-poloidal torus with R/a=3.3, 

N=2)[7,16]. It is a relatively high aspect ratio, which is 

comparable to that of the Wendelstein 7-X (W7-X, a 

helias type torus with R/a=10.6, N=5)[10]. However, 

this device is unique in a pioneering idea adopting a 

small toroidal period number of N=4, which is the recent 

trend of optimization targeting quasi-isodynamic 

(omnigeneous) configurations [8]. Hereafter, the 

notations for the B-field expression in Refs.[3,4,12] are 

followed, and therefore � and � are the poloidal and 

toroidal flux, ‘=d/ds is the radial derivative by the flux 

surface label s. In this paper, we use the flux surface 

averaged minor radius �r� [m] as this label s. In the H-J, 

the rotational transform per toroidal period 

(�’/�’)/N�0.14 at a radial position of (�/�edge)
1/2

=0.5 (in 

a standard configuration)  

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0 1 2 3 4 5 6 7

maglow bumpiness
medium bumpiness
high bumpiness

B
 o

n
 a

 f
ie

ld
 l

in
e 

[T
]

�
B  

Fig.1 The magnetic field (B) strength on a field line as 

functions of the poloidal angle �B in the Boozer coordinates at 

radial position of (�/�edge)
1/2

=0.5 (corresponding to 

�r��0.08m) in three configurations in Ref.[20]. 

 

parameters

� ' [Tm]

�  ' [Tm]

B�   [Tm]

B� [Tm]

V '/4�2 
[m

2
]

 <B
2
>

1/2  
[T]

H2

low bumpy

      � b=0.01

medium bumpy

             � b=0.06

high bumpy

       � b=0.15

0.0526879

0.0949292

1.575483  

3.00x10
�10

1.189839

0.105642

�1.268501

0.0553847

0.0998489

1.708022

0.100082

1.305393

�1.133101

0.0586983

0.1087476

1.763566

1.367054

0.102622

�0.996757

1.59x10
�10 �2.57x10

�10

 

Table 1 The parameters at (�/�edge)
1/2

=0.5 as inputs for the 

viscosity calculation in the next section. 

 

is larger than (�’/�’)/N�0.096 in the QPS. (Also in this 

technical viewpoint on the rotational transform at 

(�/�edge)
1/2

=0.5, the H-J and the W7-X with 

(�’/�’)/N�0.16 have a common characteristic.)  

  Figure 1 shows the B-field strength on a field line as 

functions of the poloidal angle �B in the Boozer 

coordinates [3] (s, �B, �B) at radial position of 

(�/�edge)
1/2

=0.5. These are configurations used in recent 

experiments investigating the configuration dependence 

of the bootstrap (BS) currents [20]: (1) the low 

bumpiness (�b=0.01), (2) the medium bumpiness 

(�b=0.06), and (3) the high bumpiness (�b=0.15) 

configurations. (Following discussions in Ref.[20], we 

often use here a notation of �b�B01/B00 at 

(�/�edge)
1/2
�0.67 defined by using the Fourier expansion 

in the Boozer coordinates Bmn
(Boozer) , to represent effects 

of m=0,n�0 Fourier modes in B.) For this kind of 

situations with higher non-axisymmetric Fourier modes 

n�2 and with large (N�’/�’�L)�1
 values making a 

displacement of the trapping well structure from a 

simple sinusoidal curve, the conventional analytical 

methods for the ripple-trapped particle dynamics [22] 

and the boundary layer equation [14] may be thought to 

be inappropriate [9,10]. This doubt is due to a fact that 
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the conventional methods often assume “ideal” model 

magnetic fields written as B/B00 = 1 + �T(�) + �H(�) 

cos{L��N�+�(�)} with (N�’/�’�L)�1
<<1. As discussed 

previously [17], however, we still can apply these 

theories only with minor modifications in the modeling 

method of B especially when we calculate the boundary 

layer correction on the non-diagonal coefficient 

N*(boundary) and the 1/�
1/2

 diffusion effect in the diagonal 

coefficient L*(�1/2) since these correction terms are 

relatively insensitive to the ripple amplitude �eff. This 

modeling method is already described in Ref.[17] and 

thus will not be shown here. In viewpoint of the 

bounce-averaged radial drift of the ripple-trapped 

particles, an optimized condition, which is discussed by 

Mynick, et al. as “�-opimization” [23], is approximately 

realized in the “high-bumpiness” configuration. In fact, 

well-known 1/� diffusion component in the diagonal 

coefficients L* is reduced in configurations with lager 

bumpy ripple (�b~0.1) in spite of the increased �H(�) 

compared with cases with �b�0.01. Similarly to the drift 

optimizations in QPS[7,16,17], W7-X[10], and the 

inward shifted configurations in LHD [21], this 

reduction of the 1/� diffusion in configurations with 

larger ripples is one example indicating that it is 

important to reduce the bounce-averaged radial drift 

velocity rather than to reduce the fraction of the 

ripple-trapped particles. An importance of reducing this 

radial drift velocity is recently stressed again in relation 

with the zonal flow in non-axisymmetric toroidal 

plasmas [24]. The parameters including the covariant 

toroidal and poloidal components of the magnetic field 

B�
(Boozer)

, B�
(Boozer)

 and the radial derivative of the 

volume enclosed the flux surface 

V' /4� 2 = (� ' B� + � ' B� )/ B
2

 are listed in Table 1. 

Although the flux-surface-averaged magnetic field 

strengths and the plasma dimensions are almost identical 

in these configurations, a constant H2 differs depending 

on the bumpy field control. It expresses an effect of the 

ripple fields on the plasma flow, especially that driven 

by non-bounce-averaged guiding center motions of 

deeply trapped particles (with shorter bounce periods), 

and is defined by [11,12] 

H2 �
(� '�B/��H )2 � (� '�B/��H )2

(� '�B/��H +� '�B/��H )2
      (1) 

using the Hamada coordinates[3] (s, �H, �H). It is 

well-known [11,19] that conditions with H2~1 and 

H2<�1 are correspond to nearly axisymemtric B/B00 � 

1+�T(�) and helically symmetric B/B00 � 1+�H 

cos(L��N�) cases, respectively, and that intermediate 

conditions of �1<H2<<1 can be seen in configurations 

where the parallel flow is damped by bumpy fields B/B00 

� 1+�H cos(N�). We can see this tendency in Table.1, 

and will show in the next section how the viscosity 

coefficients depend on this constant.  

 

3. Numerical Examples 

  Similarly to Refs.[3,12,17], the numerical results for 

the mono-energetic coefficients M*, N*, and L* in 

comparisons shown here are obtained using the Drift 

Kinetic Equation Solver (DKES) [25] together with the 

conversion formulas Eqs.(43),(54)-(56) in Ref.[3] (and 

Eq.(41) in Ref.[4]). In collisionality parameters (inverse 

of mean free path)  
�D

a /v  and  
�T

a /v , subscript “D”,”T” 

indicating collision type and superscript “a” indicating 

particle species are omitted in figures because these 

normalized mono-energetic results are those for all 

species, and the collisionality parameters in the figures 

means both of the pitch angle deflection �D
a

 in 

collisionless regimes and the pressure anisotropy 

relaxation �T
a /3  in the Pfircsh-Schlüter (P-S) regime 

where M*, N*, L*�  
(�T

a /v)�1
 [3,12]. Also following 

these previous works, we show here the non-diagonal 

coefficient N* in a normalized form (often called as 

“geometrical factor” [11,13,19,26]) of G
(BS)

� 

��B
2
�N*(�/v, Es/v)/M*(�/v). In Fig.2, M*(�/v) used for 

this normalization is shown. In a method in Ref.[12] 

expressing the viscosity coefficients as sum of several 

components, this factor is given by 

 

G
(BS) = � ' B

�
� � ' B� + B

2
H2

V'

4� 2

           � B
2

N
* (asym)(� /v) + N(boundary)

 * (� /v, Es /v)

M
*(� /v)

. (2)  

First three terms � ' B
�

� � ' B� + B
2

H2V' /4� 2
 express 

a flow-driving parallel force  (
 

Bi�i�a , Bi�i�a ) due 

to non-bounce-averaged guiding center motion of deeply 

trapped (ripple-trapped in helical/stellarator devices) 

particles with shorter bounce periods. On the other hand, 

N
* (asym)

 expresses effects of barely trapped (toroidally 

trapped) particles with longer bounce periods, and 

N(boundary)
 *

 expresses the collisional coupling effect 

between the toroidally trapped particles and the 

ripple-trapped particles’ bounce-averaged bounce center 

motion. Therefore appearances of N
* (asym)

, N(boundary)
 *

 

in G
(BS)

 require sufficiently long mean free path (�/v)�1
 

for the formation of collisionless trapped orbits with 

longer bounce periods, and these terms disappear in the 

collisional limit (P-S regime), N
* (asym) + N(boundary)

 * � 0  

at �/v��. In this G
(BS)

, only the boundary layer 

correction term N(boundary)
 *

 is sensitive to E�B drift 

effects suppressing the well-known 1/� perturbation in 

the ripple-trapped pitch-angle range �
 2

<1. This term is a 

monotonically decreasing function of absolute value of 

the E�B drift parameter 
 
Es /v , and vanishes in a large 

 
Es /v  limit [12]. For electrons, the E�B effects on the 

neoclassical viscosity coefficients are weak because of 
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the large thermal velocities (Es/v�0) and thus this term 

does not vanish even in the experimentally observed 

conditions with ambipolar radial electric fields of 

<10kV/m. On the other hand in the energy-integrated 

coefficients for ions (see Appendix), this term is 

suppressed by the large E�B effect of Es/v~0.01T in the 

ambipolar condition. (It also should be noted that there 

are two different roles of the “radial electric field”. One is 

that as the E�B drift parameter Es/v [3,25] in N(boundary)
 *

 

and L*. These viscosity coefficient are even functions of 

Es/v, and therefore we show here only their dependence 

on Es/v�0. In discussion of the “Es-driven flows” in the 

next section, the radial electric field driving the flows is 

that as the thermodynamic force Xa1 defined in Appendix 

in which the “directions of flows” depend on the sign of 

Es.) For this term in the weak radial electric field limit 

 
N(boundary)

 * (Es /v=0) ,  

 

N(boundary)
 * = �

12

� 2

�D
a

v

B
2

� '� ' fc

V '

4� 2
�

 d�B 2�eff (� � 2sin�1�*)
0

�

� �B

��T

��B

�
2

3
1 � �*

2 ��H

��B

�

��
�

��

 

(3) 

in Ref.[12] is used in this paper, which uses the 

Shaing-Hokin theory [22] (with replacing the ripple 

amplitude �H by the effective ripple-wall depth �eff 

defined in Ref.[17]) for a boundary condition in the 

boundary layer analysis [14]. To confirm a validity of 

this use, we show in Fig.3 also L* in the configuration 

of �b=0.06, which is analytically obtained by the 

Shaing-Hokin 1/� regime theory. Similarly to the 

calculation example in the QPS [17], this analytically 

approximated solution retains an accuracy of a factor of 

2 even for this coefficient of �(�eff)
3/2

 in the three H-J 

configurations, and thus we can investigate the boundary 

layer correction by applying this solution. Exactly 

speaking, a sum of contributions of 

non-bounce-averaged guiding center motions (given by 

Eq.(16) in Ref.[12]) and the 1/� regime asymptotic value 

L*(�1) given by the bounce-averaging methods [9,10,22] 

cannot reproduce exactly the numerically obtained L* in 

the transient region between the 1/� and plateau regimes 

(for e,g,, �/v~10
�2

m
�1

 in the H-J). Although a more exact 

calculation of this region requires the 1/�
1/2

 component 

L*(�1/2) and the other boundary layer correction 

L(boundary)
 *

 [12,17], this problem is out of scope here. 

Since these corrections to L* also are caused by the 

ripple-trapped/untrapped boundary layer, we have to 

validate the boundary layer theory [14] firstly in the 

non-diagonal coefficients N* in which the boundary 

layer correction clearly (not transiently) appears in a 

wide range of collisionality in collisionless limit with 

weaker E�B drift effects Es/v�0. It also should be noted 

on cases with finite E�B drift Es/v�0 in multi-helicity 
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Fig.2 The diagonal mono-energetic coefficient expressing the 

parallel viscosity against flows M* given by the analytical 

formula (solid curves) and the numerical calculation with the 

DKES (open circles) at radial position of (�/�edge)
1/2

=0.5 in 

three configurations. 
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102
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Fig.3 The diagonal mono-energetic coefficient L* (radial 

diffusion) given by the analytical formulas and the DKES 

(open symbols). The analytical calculation includes two parts, 

a contribution of non-bounce-averaged motions given by 

Eq.(16) in Ref.[12] (black solid curve) and that of the 

bounce-averaged motion of the ripple-trapped particles given 

by the Shaing-Hokin theory [22] (blue solid line).  

 

configurations [17] that the �
1/2

 regime of L* appears in 

wide ranges of the collisionality instead of collisioless 

detrapping “� regime”. The scaling of L*�(�/v)/(Es /v)
2
 

in Ref.[27] is valid only in so-called single-helicity 

configurations such as an example in Fig.5 in Ref.[12] 

or in more collisionless limits in general configuration. 

Another important purposes to compare the analytical 

formulas and the numerical calculations for N* is to 

clarify this (�/v, Es/v) range where the previous banana 

regime theory by Shaing, et al.[11] is valid. Since they 

neglected the boundary layer correction term N(boundary)
 *

 

in Eq.(2), their theory must be interpreted as an 

expression for a limit with appropriately strong radial 

electric field Es/v�0 where the 1/� perturbation is 

suppressed. 

  Figure 4 shows the geometrical factor G
(BS)

. Similarly 

to Refs.[3,4,11,13], the sign of G
(BS)

 (and/or N*) is 

defined as follows. For the spontaneous parallel flows 

driven by normal pressure gradients �pa/�s<0, G
(BS)

>0 

indicates the BS current generation in co-direction (ion 

flow velocity in co-direction and electron flow velocity in 
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counter-direction). For the flows driven by positive radial 

electric fields Es>0, G
(BS)

>0 generates flow velocities in 

co-direction for both of ions and electrons. In pure 

non-bounce-averaged effects excluding the N(boundary)
 *

, it 

can been seen that the configuration dependence in the 

H-J is mainly that of the first three terms in Eq.(2) 

including the constant H2 in Eq.(1). The values of 

� ' B� � � ' B� + B
2

H2V' /4� 2
 in the low-, medium-, 

and high-bumpiness configurations are �0.04016, 

�0.02270, and 6.22�10
�4

, respectively. This dependence, 

in which the large bumpy ripple reduces the BS-current in 

counter-direction generated by effects of deeply trapped  
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Fig.4 The geometrical factor G
(BS)

� ��B
2
�N*/M*. In the 

analytical results shown by red solid curves, the boundary 

layer correction in the 1/� regime in Eq.(3) is omitted and 

therefore they correspond to conditions with sufficiently large 

E�B parameter Es/v (�10
�3

T) in which the 1/� diffusion in 

Fig.3 is suppressed. Black solid lines indicate 1/� regime 

asymptotic values given by adding Eq.(3). The DKES results 

are indicated by open symbols for both of the 1/� regime 

(Es/v=0) and the � (or �
1/2

) regime (Es/v�10
�3

T). 

particles, is qualitatively consistent with recent 

experimental observation [20] where larger BS-currents 

in co-direction were observed in configurations with 

larger large bumpy ripple. Since the bootstrap currents 

are determined by using the energy-integrated viscosity 

coefficients as shown in Appendix, this experimentally 

observed increase of the currents in the co-direction 

means also a decrease of contributions of low energy 

particles (in range of v<vTa) with high collisionality 

�(v)/v>10
�1

m
�1

, which make the current-driving forces 

in counter direction, in the integration dK� . However, 

this present calculation is quantitatively different from 

the previous analysis in Ref.[20] as discussed in the next 

section. The dependence of the DKES results with 

Es/v�10
�3

T indicates that the formulas derived by 

Shaing, et al.[11] expresses both of the � and �
1/2

 

regimes, although this fact was not stated in Ref.[12] 

that investigated mainly a single-helicity configuration. 

 

4. Discussion and Conclusion 

  Because of a problem on the collisional momentum 

conservation stated in Ref.[11], this kind of quantitative 

benchmarking tests of the non-diagonal coefficient N* 

had not been reported before the work in Ref.[3]. 

Therefore we recently concentrated in testing theories of 

N* after Ref.[3] that clarified a relation between the 

previous analytical theories for the flows [11,13] and the 

numerical methods for the DKE [21,25]. A consistency 

of the new unified theory in Refs.[3-4], which fully 

includes the previous theories in Refs.[11,13] as a strong 

radial electric field limit (Es/v��), have been 

confirmed by these studies. For the boundary layer 

correction N(boundary)
 *

, which was neglected in the 

previous analytical theories [11,13], it is demonstrated 

that a complimentary use of the bounce- or 

ripple-averaging methods together with the analytical 

solution for the boundary layer structure [14] will be 

usable in practical applications. In Ref.[17] and the 

present study, however, we investigated only the 1/� 

regime (�/v, Es/v�0) asymptotic value in Eq.(3). It will 

be important for the practical applications to make a 

formula for the �/v, Es/v dependence of 

 
N(boundary)

 * (� /v, Es /v)  in Eq.(2) which smoothly 

connects this asymptotic value to the plateau and the � 

(or �
1/2

) regimes. Although a basic idea for this 

connection formula in the single-helicity configurations 

is shown in Ref.[12], the scaling of L*
(�)
�(�/v)/(Es/v)

2
 

[27] assumed there is not generally valid [17]. Therefore 

the connecting method applicable for general 

multi-helicity configurations still remains as future 

theme and will be reported elsewhere. 

  Nevertheless, we can discuss here some relations of 

present calculation results for N* with past preliminary 

analyses using previous BS current codes (called 

SPBSC or BSC) [19,26] for recent H-J experiments [20]. 
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By comparing Fig.2 and Fig.4, we can see that the 

collisionality of the transient regime �/v~10
�2

m
�1

 in 

G
(BS)

, where the collisional limit value 

G
(BS) �� ' B� � � ' B� + B

2
H2V' /4� 2

 and the 

collisionless limit value including finite 

N
* (asym) + N(boundary)

 *
 are connected, is different from 

that of the plateau regime of M* (M*�(�/v)
0
 at 

�/v~10
�1

m
�1

). In contrast to this collisionality regime 

boundary of G
(BS)

 (or N
* (asym) + N(boundary)

 *
) 

determined by the toroidally tapping effects as 

mentioned on Eq.(2), that of M* is determined mainly 

by the ripple-trapping effects. However, the connection 

formula in the previous codes assumed that the 

collisionality regime boundary G
(BS)

 is that of M*[26]. It 

is a shortcoming of an inappropriate analogy of 

tokamaks, and the formula neglects a fact that there are 

two types of flow-driving mechanisms due to the 

ripple-trapping and the toroidally trapping in 

helical/stellarator configurations [12]. Therefore, in the 

plasma parameter range corresponding to the “plateau” 

regime 10
�3

m
�1

<�/v<10
�1

m
�1

, these previous codes 

often result in overestimations of the BS current in 

co-direction. So far, the collisionality dependence of the 

BS current in the H-J was investigated by density scan 

experiments, and the theoretical predictions were often 

larger than the measured values in medium density 

plasmas with spontaneous current component in 

co-direction [20]. A main cause of this discrepancy is an 

inappropriate connection formula. Another discrepancy 

was pointed out in an extremely low-density limit of 

ne~0.4�10
19

m
�3

. When the mean free path of ions is not 

so long (�i/vi>10
�2

m
�1

), the flow direction of ion driven 

by positive radial electric fields Es>0 can be in 

counter-direction ( Gi
(BS) < 0 ) especially in the low 

bumpiness configuration (�b�0.01). On the other hand, 

the electron collisionality is in relatively long mean free 

path regime (�e/ve<10
�2

m
�1

) in the ECH plasmas [20] 

and thus the Es-driven electron flow tends to be in 

co-direction because of Ge
(BS) > 0 . This difference of 

the collisionality and resulting difference of Ga
(BS)

 

between particle species generates the Es-driven BS 

currents [13]. (Exactly speaking, the direction of the 

flow velocities of each particle species is not determined 

by Ga
(BS)

 of the individual particle species only, but by 

the parallel force balance equation coupling the all 

species [3,4,11,13].) Although detailed plasma 

parameters (Te, Ti, Es) were not reported in Refs.[18-20], 

following past studies in other medium-sized devices 

[28], it will be appropriate for the low density 

(ne~0.4�10
19

m
�3

) ECH plasmas to assume this large 

difference of the collisionality between particle species 

and the positive radial electric field of a few 

kV/m~10kV/m. Therefore the Es-driven BS current in 

the counter-direction is expected. As mentioned 

previously, the boundary layer correction term Eq.(3) 

remains in the energy-integrated coefficients Nej for 

electrons even in this situation. Because of two reasons, 

the previous BS current codes [19,26] result in an 

underestimation of the difference Ge
(BS) � Gi

(BS)
 in this 

experimental condition in Ref.[20]. One is 

aforementioned inappropriate connection formula 

making overestimation of Es-driven ion flow in 

co-direction in conditions with �i/vi~10
�2

m
�1

. Another 

reason is the neglect of Eq.(3) for the electrons. It was 

reported in Ref.[20] that the previous codes required too 

strong positive radial electric field to explain the BS 

current in counter-direction observed in the low 

bumpiness configuration. This discrepancy can be 

interpreted as the underestimation of Ge
(BS) � Gi

(BS)
. In 

addition to this kind of analyses of the experimental 

results [18-20], the integrated simulations utilizing 

iterative calculations of the MHD equilibrium and the 

transport [1,2], and designing trim coils with the 

Levenberg-Marquardt algorithm [7] also are important 

future application areas of this present study. 
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Appendix  Bootstrap Current given by the 

Parallel Force Balance Equation 

  In this Appendix, we summarize a main result of the 

parallel force balance equation relating to the bootstrap 

current. For this calculation after obtaining the 

mono-energetic coefficients M* and N*, we have to 

calculate the energy-integrated coefficients Maj and Naj 

with j=0,1,2 for particle species a=e,i defined by 

 

Maj , Naj�
�

�
� =

2na

�
dK

0

�

� Ke
�K

K �
5

2

�
��

�
��

j�1

mavTaK
3/2

                        � M
* �(v)/v( ), 

c

ea

N
* �(v)/v, Es /v( )

�

�
�

�

�
�

. 

  (A.1) 

The notations in Ref.[3] are followed here and thus the 

normalized particle energy  

 

K �
v

vTa

�

��
�

��

2

�
mav

2

2Ta

  

is used. By solving the force balance equation with these 

coefficients using a procedure described in Appendix C 

of Ref.[3], the bootstrap current in a single ion species 

plasma is given by 
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JE
(BS) � JE � JE

cl

= nee B(u
�i � u

�e ) / B
2 1/2

��S BE
�

/ B
2 1/2

= LE1
e Xe1 + LE2

e Xe2 + LE1
i Xi1 + LE2

i Xi2 + LEE BE
�

/ B
2 1/2

. 

(A.2) 

Here, Xa1 and Xa2 are radial gradient forces written as 

derivatives with respect to the label of the flux surfaces s, 

Xa1 � �
1

na

�pa

�s
� ea

��

�s
,   Xa2 � �

�Ta

�s

.   (A.3) 

The classical inductive current 
 

JE
cl
� �S BE

�
/ B

2 1/2
 

determined by the classical Spitzer conductivity �S  is 

separated here. The remaining part includes transport 

coefficients LE1
e

, LE2
e

, LE1
i

, LE2
i

 and LEE , which are 

determined by the viscosity coefficients describing the 

configuration effects. These are written as 

 

LE1
e   LE2

e�
�

�
�
=

nee

B
2 1/2

1  0[ ] Me + �e( )�1
N e

,  (A.4) 

 

LE1
i   LE2

i�
�

�
� =

�
nee

B
2 1/2

1  0[ ] Me + �e( )�1
Me

1 0

0 0

�

�
�

�

�
� Mi + �i( )�1

N i

, 

(A.5) 

 

LEE = �
nee

2�ee

me

1  0[ ] �e
�1 � (Me + �e )�1{ }

1

0

�

�
�

�

�
�
,  (A.6) 

by using following 2�2 matrices of the energy-integrated 

viscosity coefficients Maj ,  Naj , and friction 

coefficients li  j
aa

 with the small mass ratio approximation 

for this single ion species case. 

 

Ma =
�aa

nama B
2

Ma1 Ma2

Ma2 Ma3

�

�
�

�

�
� ,   N a =

�aa

nama

Na1 Na2

Na2 Na3

�

�
�

�

�
�

�a � �
�aa

nama

l11
aa �l12

aa

�l21
aa

l22
aa

�

�

�
�

�

�
�
�

 

A qualitative interpretation for Eqs.(A.4)-(A.5) is that the 

balance of the driving forces Naj Xak  and damping 

forces due to Maj  and li  j
aa

 determines the parallel flow 

velocity 
 

Bu
�a . The parallel inductive electric field term 

 
LEE BE

�
/ B

2 1/2
 is not important in the H-J 

experiments discussed here [18-20].  

  Although some conventional theories had been written 

assuming that G
(BS)

=const for all energy (�/v, Es/v) range 

[11], this assumption is not generally valid in 

non-symmetric toroidal plasmas. In the unified theory 

[3-4] discussed here, this dependence of G
(BS)

 is taken 

into account by using these 6 integrals in Eq.(A.1). (See 

also a discussion after Eq.(49) in Ref.[3].)  
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