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We study heating of space-charge-dominated coasting beams circulating in a storage ring. A number of 

molecular dynamics simulations are performed systematically to figure out the parameter-dependence of the 
heating rate due to interparticle Coulomb collisions. The instability mechanism of interest to us here is basically the 
same as the so-called radio-frequency heating in a Paul trap. We introduce a new definition of the Coulomb 
coupling constant � that characterizes the phase of one-component plasmas. The new � is based on observable, 
averaged quantities and can be applied to dispersive situations. It is confirmed that the heating rate comes to a peak 
when the beam is in a liquid phase; the peak is always located at 1� �  regardless of particle species, beam energy, 
and line density. 
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1. Introduction 
A beam of charged particles traveling in an 

accelerator is typically in a gaseous state. Each particle 
oscillates about the reference orbit at high speed owing to 
the external focusing forces provided by a series of 
magnets. It is, however, possible in theory to bring the 
beam into the liquid or even the solid phase by applying a 
strong dissipative force. Such a procedure is called cooling 
because the beam temperature actually decreases in the 
center-of-mass frame. Recent progress in cooling and other 
accelerator technologies has made it more important to 
understand the behavior of high-density beams. 

As is well-known, the dynamic motion of any beam is 
more or less influenced, mostly through Coulomb fields, 
by various surrounding objects such as vacuum chambers, 
radio-frequency (rf) cavities, counter-propagating beams, 
photo-electrons, etc [1]. In case these beam-environment 
interactions are weak and thus negligible, it is not difficult 
to recognize similarity between beams and non-neutral 
plasmas. We can actually prove that the collective motion 
of a beam is nearly equivalent to that of a one-component 
plasma confined in a compact trap system [2]. 

In this paper, we study the beam heating caused by 
Coulomb collisions among individual charged particles. 
Although the multi-particle system of interest to us here is 
moving at relativistic speed in the laboratory frame, the 
present discussion also applies to a non-neutral plasma in 
an rf trap because of their physical similarity mentioned 
above. The molecular dynamics (MD) technique is 
employed to evaluate the heating rates under various 
conditions. In each simulation, we start with an ultra-low 

temperature state where the beam is Coulomb crystallized, 
namely, in the solid phase. We then apply a perturbation 
and follow the temperature evolution to calculate the 
heating rate. As the temperature rises, the crystalline 
structure is destroyed and the beam eventually reaches an 
ordinary gaseous state. During this melting process, the 
collisional heating becomes maximum at relatively low 
temperature [3]. 

The paper is organized as follows: before proceeding 
to MD simulations, we describe the theoretical background 
of the present subject. In Section 2, brief discussions are 
made of ultra-cold beams and the temperature concept for 
later convenience. We then define, in Section 3, Coulomb 
coupling constants separately for the direction of beam 
motion and for the direction perpendicular to it. The new 
definition is based on the concept of emittance and 
somewhat generalized so as to tolerate the complication of 
the beam behavior due to momentum dispersion. Section 4 
is devoted to showing MD simulation results obtained with 
various parameters. Concluding remarks are given in 
Section 5. 

 
2. Ultra-low Temperature Regime 

A charged-particle beam begins to show a complex 
collective behavior at higher density. Owing to Coulomb 
interactions that have a long range, the interparticle 
correlation becomes stronger as the beam is more 
compressed in phase space. Schiffer and co-workers first 
pointed out that a one-component plasma confined by a 
harmonic potential forms a spatially ordered configuration 
at ultra-low temperature [4]. Later, Wei, Li and Sessler 
demonstrated that such an order structure, now called a 
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crystalline beam, can be stabilized even in a realistic 
storage-ring lattice that contains focusing and defocusing 
magnets, dipole magnets, and drift spaces [5]. At low line 
density, a string crystal is formed where particles are 
aligned along the reference orbit at equal intervals. By 
increasing the number of stored particles, we can convert 
the string into a zigzag structure and, eventually, into a 
shell structure [4,5]. These Coulomb crystals have already 
been realized in ion traps by means of laser cooling [6]. 
Similar strongly-coupled states can also be established in 
dusty plasmas [7]. As confirmed later, the rf heating is 
negligible in these ordered states because random Coulomb 
collisions are suppressed. 

Despite many successful observations of Coulomb 
crystals in ion traps, nobody has succeeded in producing a 
crystalline beam in a real accelerator [8]. Several primary 
reasons why crystallizing a beam is so difficult have been 
identified theoretically [5,9]. One of the most important 
reasons is associated with the essential difference between 
an ion trap and a storage-ring accelerator, that is, the 
existence of dipole fields in the latter system. In order to 
make the beam orbit closed, we need dipole fields that give 
rise to momentum dispersion [10]. Another serious 
obstacle toward beam crystallization is resonance 
instability [9]. Heating due to resonance can cause major 
trouble in almost all existing storage rings whenever a 
beam is strongly cooled. By contrast, it is generally quite 
easy to avoid this instability in ion traps. 

So far, we have used the term “temperature” without 
deep consideration of its meaning. When an ensemble of 
charged particles is confined by uniform, time-independent 
external fields, the temperature T can simply be evaluated 
from the average kinetic energy; namely, 

2

B ( , , ),
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k T x y z

m
�

� �� �           (1) 

where kB is the Boltzmann constant, m is the particle mass, 
p� is the kinetic momentum of a particle in �-direction, and 

X  stands for taking the average of quantity X over all 
particles. Provided that the system is in equilibrium, the 
temperatures of the three degrees of freedom are equal; 
i.e., x y zT T T� � . When the external restoring force 
received by a non-neutral plasma is time-dependent, the 
simple definition above no longer applies. Suppose a large 
Coulomb crystal in a Paul trap, for instance. Because of the 
rf confinement field, the crystalline structure breathes as a 
whole, which means that 2p�  is always non-zero. Note 
also that the amplitude of the periodic breathing oscillation 
grows in an outer shell; the temperature of a larger crystal 
thus becomes higher according to the definition (1). To 
avoid this ambiguity, we often pay attention to 
non-periodic components of particle motion [11,12]. 
Temperature actually corresponds to the energy of 
“random motion”, so the contribution of “coherent motion” 
must be subtracted before calculating T. The fact that we 
define the beam temperature in the center-of-mass frame is, 

in one sense, based on this thoughts. (All particles in a 
beam are flowing toward the same direction at roughly the 
same speed. We, therefore, subtract this coherent 
component of the beam motion prior to the temperature 
calculation.) 
 

3. Coulomb Coupling Constants 
The strength of the correlation in an interacting 

multi-particle system can be estimated from the Coulomb 
coupling constant �, defined as the ratio of the average 
Coulomb energy to the average kinetic energy [13]: 
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where q is the charge state of the particle, and 2d is the 
average interparticle distance. The Coulomb coupling of an 
ordinary accelerator beam is usually very weak and thus 

1�� . The beam comes in to the liquid phase at 1� �  
and is crystallized when � exceeds around 170 [13]. An 
important question now is how to define T in Eq. (2) or, in 
other words, how to subtract the coherent component of 
beam motion. Although the effective temperature studied 
in Refs. [11] and [12] is relevant to the present purpose, it 
requires the information of the orbits of individual particles 
that are not observable in real experiments. Instead, we 
here employ root-mean-squared (rms) quantities that are 
basically observable and enable a quick estimate of T. In 
what follows, we assume a coasting beam circulating in a 
storage ring. A Cartesian coordinate system, moving 
together with the beam, is taken such that the z-axis 
coincides with the direction of beam propagation. The 
effective beam focusing forces in the two transverse 
directions (x and y) are set equal for the sake of 
simplicity; then, the cross section of an equilibrium beam 
is roughly round on average at low temperature. 
 
3.1 Transverse degrees of freedom 

The volume occupied by a beam in six-dimensional 
phase space ( , , ; , , )x y zx y z p p p  is called emittance that is 
invariant in a non-dissipative collisionless system. It is 
possible to show that the emittance can directly be linked 
to the entropy that is a measure of randomness. This 
suggests a possibility of using the emittance concept for 
temperature definition. The rms emittance projected to the 
transverse x-direction can be given by 

22 24 ,x x xx p xp
m c

�
��

� �         (3) 

where � and � denote the Lorentz factors; namely, in the 
laboratory frame, the beam is traveling at the speed c�  
(with c being the light velocity) and the total energy of the 
reference particle is 2m c� . The projected rms emittance 

y�  of the y-direction is introduced in a similar way. The 
two emittances are equal, i.e. ( )x y� � ��� � , when the 
beam is in equilibrium. For a one-component plasma in a 
trap, we simply put 1�� �  in Eq. (3) [14]. 

951

H. Okamoto et al., Coulomb Coupling and Heating of Charged Particle Beams in the Presence of Dispersion



 

The transverse rms emittance ��  becomes smaller 
and smaller as the beam approaches the solid phase. It is 
straightforward to prove that ��  is exactly zero in a 
perfect crystalline state (except for quantum noise) [15]. 
Considering these facts, we define the transverse beam 
temperature ��  as follows: 

22
0

B ,
8
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k
m a

�
� �
�

� �� � �
� �

              (4) 

where 0p m c���  is the kinetic momentum of the 

reference particle, and 22a x�  corresponding to the 

rms dimension of the beam. If the particles are uniformly 
populated, a agrees with the radius of the beam boundary 
[16]. When the external force is time-independent, the 
equilibrium distribution of particles is upright in the 
transverse phase space and, then, 0xxp � . In that case, 
Eq. (4) becomes identical to the conventional definition in 
Eq. (1). The average interparticle distance is roughly 

2 1/ 3(3 / 4 )d a N�  where N is the line density of the beam. 
Making use of this and Eq. (4) in Eq. (2), we obtain the 
coupling constant 

21/ 3
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          (5) 

where pr  is the classical radius of the particle.  
 
3.2 Longitudinal degree of freedom 

With regard to a one-component plasma confined in a 
regular trap, there is no substantial difference among the 
three degrees of freedom. Although the axial confinement 
force is generally static in a linear Paul trap, the 
�-definition parallel to Eq. (5) holds for that direction; all 
we have to do is to replace x and px by z and pz respectively. 
In the case of circular accelerators, however, the situation 
is more complex due to the existence of dispersion that 
couples the longitudinal beam motion with the transverse. 
Besides, the longitudinal dimension 2z  is not well 

defined for a coasting beam. 
To understand how the dispersion creates coherence 

in the beam motion, consider a coasting crystalline beam 
circulating in a storage ring. It is clear that all particles 
must have an identical revolution frequency in order to 
maintain the ordered structure. In addition, the closed 
orbits of individual particles never cross, which means that 
the path length of a radially outer particle is longer than 
that of an inner particle [9,17]. We thus conclude that the 
outer particle must travel slightly faster than the inner 
particle; in other words, the angular velocity rather than the 
linear velocity must be the same. This fact naturally leads 
us to the expectation that the particle distribution of a 
crystalline beam should be linear in x-pz phase space (not 
in z-pz phase space) [18]. Figure 1 is a MD simulation 
result that actually verifies this expectation. The ion 
distribution observed at a particular point of a storage ring 
has been plotted on z-pz phase plane (left panel) and on x-pz 

phase plane (right panel). Each dot represents a single 
24 +Mg  ion traveling at the kinetic energy of 35 keV. As an 
example, we assumed the lattice of the storage ring 
“S-LSR” that is in operation at Kyoto University [19]. The 
ring is composed of six dipole magnets and six pairs of 
quadrupole magnets. We see that the ions are aligned only 
in x-pz phase space. This linear distribution is maintained 
all around the storage ring while its tilt angle varies 
periodically. For the definition of the longitudinal 
emittance �� , therefore, we use the emittance projection 
on to x-pz phase plane,  

22 24 .z zx p xp
m c

�
��

� ��         (6) 

With this rms quantity, � �  can be expressed, similarly to 
Eq. (4), as 
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The longitudinal Coulomb coupling constant then takes the 
form 
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4. Simulation Results 

In order to explore the dynamic behavior of an 
ultracold relativistic beam in a particle accelerator, we 
developed the MD simulation code “CRYSTAL” that 
integrates the canonical equations of beam motion in a 
symplectic manner. The program is designed so that we 
can easily incorporate an arbitrary arrangement of various 
magnets sitting along the beam orbit. For the evaluation of 
interparticle Coulomb interactions, we employ the periodic 
boundary condition in the z-direction, slicing the coasting 
beam into many pieces of equal length; these supercells are 
assumed to have an identical particle distribution for 
computing efficiency. Short-range Coulomb interactions 
among individual particles are calculated in the reference 
supercell as precisely as possible, while we take the 
Ewald-type summation [20] over all supercells to make a 
quick estimate of the long-range Coulomb interactions [1]. 

It is well-known that the lattice of a storage ring must 
satisfy two primary conditions in order to achieve beam 
crystallization [5,9]. First, the ring has to operate below its 
transition energy. This requirement can easily be met in 

Fig.1  Typical phase-space distribution of particles forming 
a multi-shell crystalline beam in the storage ring 
“S-LSR”. (a) z-pz phase space, (b) x-pz phase space. 
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Fig.4  Dependence of the heating rate on ion mass. The line 

density of 5 12.37 10 m��  has been assumed in the 
three examples. 

practice by setting the design beam energy low. The second 
condition is associated with linear resonance, which has 
already been mentioned in Section 2. We must avoid this 
collective instability because the heating caused solely by 
Coulomb collisions is our concern here. In the course of 
our simulation study, we have employed several test rings 
satisfying these necessary conditions, and found no 
essential dependence of the results on the lattice designs. In 
the following, therefore, we only show MD results on 
S-LSR where the linear resonance can be eliminated by 
choosing proper parameters. The ion species assumed here 
is 24 +Mg  unless particularly noted. 24 +Mg  beams have 
actually been used in laser cooling experiments at S-LSR. 
The kinetic energy is adjusted to 35 keV well below the 
transition energy of the ring.  

Typical time evolutions of the Coulomb coupling 
constants defined in Eqs. (5) and (8) are plotted in Fig. 2. 
The beam is initially so hot as usual that the Coulomb 
coupling is very weak before cooling. We then apply an 
ideal three-dimensional dissipative force to compress the 
beam in phase space. Both �’s grow constantly, cross the 
threshold value of 170 beyond which the beam is actually 
crystallized, and finally exceeds 510 . The line density 
assumed in this simulation is 5 14 10 m��  where the 
resultant crystalline structure has three shells. For 
comparison, the coupling constant based on the simple 
average of squared momenta 2p�  is indicated with a 
dotted line. Owing to the periodic breathing oscillations of 
the crystalline shells, the conventional � has been saturated 
at a very low level despite that the beam is certainly 
crystallized after about 70 turns around the ring. The 
saturation level is even lowered as the line density 
becomes higher. 

We now show, in Fig. 3, the heating rates evaluated 
from MD data of different line densities. The same 
numerical data have been used for the plots in both panels, 
but the abscissas are different. In the upper panel, the 
abscissa is the transverse rms emittance x�  given in Eq. 
(3) while the lower panel uses the transverse coupling 
constant ��  in Eq. (5). We obtain similar pictures even if 

��  and ��  are adopted as the abscissas. We confirm that 
the heating rate is extremely low in a crystalline state, 
which means that the ordered structure lasts very long even 
without artificial dissipation. To save the computing time, 
we weakly perturbed the crystalline state at the beginning 
and followed the temperature evolution. Then, the heating 
rate comes to a peak at relatively low temperature. The 
upper picture clearly indicates that the heating-rate 
mountain tends to shift toward the higher emittance side as 
the line density increases [21]. It is, however, reasonable to 
expect that collisions are most enhanced when the 

 
Fig.2  Time evolution of the transverse and longitudinal 

Coulomb coupling constants ( ��  and �� ) during a 
cooling process. The dotted curve is based on the 
simple definition of temperature computed from the 
average kinetic energy as in Eq. (1). 

 
Fig.3  Dependence of the heating rate on beam line density. 

Identical MD simulation results have been plotted as 
a function of rms emittance ( ��  in Eq. (3)) and as a 
function of Coulomb coupling ( ��  in Eq. (5)). 
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Coulomb energy is comparable to the kinetic energy of 
particles, namely, in the region of 1� � . As verified in the 
lower picture, the peak position actually becomes almost 
independent of line density by plotting the heating rate as a 
function of �. The emittance-based temperature ��  is also 
insensitive to line density and its value corresponding to 

1� �  is about 0.1 Kelvin. 
Similarly, we checked the dependence of the heating 

rate on ion mass number A, on beam energy, and on the 
strength of external confinement forces. It then turned out 
that the heating rate is always maximized at 1� �  
regardless of mass number (as shown in Fig. 4) and beam 
energy. The peak position of the heating-rate curve, 
however, weakly depends on the plasma confinement 
strength; as the confinement force is increased, the peak 
generally moves toward the high � side. 

 
5. Summary 

We studied the beam emittance growth caused by 
interparticle Coulomb collisions. The MD simulation 
technique was employed to calculate the heating rate over 
the whole temperature range. The MD code developed for 
the present study enables us to simulate the dynamic 
motion of a charged-particle beam circulating in a storage 
ring of an arbitrary lattice structure. Through a number of 
systematic simulations, we found that the lattice details, if 
properly designed, is not essential to the heating behavior 
of the beam. It was verified that the heating rate is quite 
low at both ultra-low and high temperature ranges while it 
has a peak at relatively low temperature where the beam is 
in the liquid phase. 

We introduced a new definition of temperature that is 
relevant to general situations where the external forces 
acting upon the beam are time-dependent and dispersive. 
The present definition requires no information of 
single-particle trajectories but is solely based on coarse 
-grained quantities. With this generalized temperature, the 
Coulomb coupling constants were defined as Eqs. (5) and 
(8) for the transverse and longitudinal directions. The 
dependence of the heating rate on various fundamental 
parameters was explored, which revealed that the peak 
heating usually occurs at 1� � . This conclusion should 
hold for nonneutral plasmas confined in ordinary trap 
systems such as a Paul trap. 
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