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Elementary processes of two-dimensional (2D) turbulence have been examined by extensive analyses of fine-
scale structures in the density distribution of a magnetized pure electron plasma that evolves from an unstable
initial state to a single-peaked stable distribution through successive mergers of vortex patches. Fourier-based
analyses have revealed that the spectral dynamics in the wave-number k space is qualitatively consistent with
the theoretical picture of 2D turbulence, i.e., while the energy is transferred downward, the enstrophy cascades
upward in the wave-number region larger than kin j corresponding to the size of vortex patches, and the energy
spectrum E(k) shows a power-law scaling k−α with α > 3. By applying wavelet analyses to the observed density
distributions, this spectral dynamics is connected directly to the vortex dynamics in the physical space. With
the simultaneous resolution in the physical coordinates and wave numbers, we have observed that the enstrophy
cascade is associated with the filamentation process of vortex structures. Moreover, controlled discrimination of
the coherent component in terms of the wavelet coefficients indicates significant contribution of coherent vortices
in steepening the energy spectrum far above the theoretical prediction of k−3.
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1. Introduction
In the guiding center approximation, the macroscopic

dynamics of pure electron plasmas transverse to a strong
magnetic field B0 is equivalent to the two-dimensional
(2D) vortex dynamics in inviscid and incompressible flu-
ids, through the relation ζ = en/ε0B0 between the electron
density n(x, y) and the vorticity ζ(x, y) [1]. Here, −e and ε0
are the electron charge and the dielectric constant in vac-
uum, respectively. Taking advantage of this equivalence,
many aspects of vortex dynamics constituting fundamental
processes of 2D turbulence, such as the advection, merger,
filamentation of vortices, has been studied extensively by
employing magnetized pure electron plasmas [1, 2].

Free relaxation of 2D turbulence starting from an un-
stable initial distribution has also been studied, focusing
on the formation of quasi-stationary states with ordered
structures [1, 3, 4]. In the previous study, we have inves-
tigated the relaxation process via stochastic mergers of co-
herent vortices by applying time-resolved spectral analy-
ses in terms of the density transport [5]. In this paper, we
extend these examinations further to explore fundamental
properties of 2D turbulence in terms of the transport of the
energy and enstrophy in the wave-number k space [6].

Theoretical picture of 2D turbulence has been pro-
posed by Kraichnan and Batchelor [7]. In these studies,
they proposed that in an isotropic and homogeneous 2D
turbulence, the enstrophy (vorticity) injected at the length
scale of lin j (∝ 1/kin j) cascades at a constant transfer rate
of η down to a scale of dissipation ld (∝ 1/kd) and dis-
sipates at smaller scales by viscosity. This cascade picture
of 2D turbulence leads to an energy spectrum characterized
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by the power-law scaling E(k) ∝ k−3 in the inertial range
kin j ≤ k ≤ kd of the wave-number space. In the present
work, we observe the vorticity distribution ζ(x, y) in terms
of the electron density distribution n(x, y), and analyze the
spectral dynamics over a wide range of wave numbers ex-
tending to the dissipative scale.

In addition to the Fourier-based analysis, in this paper,
we also apply the wavelet analysis to the observed density
distributions [8]. In contrast to the Fourier expantion, spa-
tially localized wave packet, called ”wavelet”, allows us to
analyze the turbulent structures in terms of both coordinate
(physical space) and scale (wave-number space) simulta-
neously within the limits of the uncertainty principle [9].
With this advantage, we examine the spectral dynamics in
the wave-number space in relation to the vortex dynamics
in the physical space, and clarify characteristic features of
2D turbulence from a physical point of view.

2. Experimental Method
The experiment was carried out by using a pure elec-

tron plasma confined in a Penning-Malmberg trap with a
uniform magnetic field (B0 = 0.048 T) and a square-well
potential. The relaxation process starts with a spontaneous
formation of vortices via a nonlinear stage of the diocotron
instability of a ring-shaped initial distribution [5, 10]. Af-
ter the production of an initial profile, the stochastic vor-
tex dynamics proceeds spontaneously while the electrons
are held in the trap. The time evolution of the 2D den-
sity distribution was observed destructively by damping
the electrons onto the conducting phosphor screen and dig-
itizing the resultant luminosity distribution with a charge-
coupled-device camera (CCD), which provides the spatial
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Fig. 1 Images of the time evolution of the density distribution.
The darkness is proportional to the density. The time of
observation (in μs) is indicated at the upper left corner.

resolution of 0.1 mm/pix, at each time step of the relax-
ation. This destructive diagnostic requires a high repro-
ducibility of the initial profiles, because of the stochastic
nature of the turbulent relaxation process triggered by the
instability. Therefore in this experiment, in addition to
technically minimizing shot-by-shot variations in the ini-
tial profiles, an ensemble-average is applied over typically
5 shots of data for each time step in evaluating physical
quantities. The details of the experimental configuration
and diagnostic are reported in Refs. [2, 4–6, 11].

3. Vortex Dynamics in 2D Turbulence
The time evolution of the observed density distribu-

tion is shown in Fig. 1. Each image is denoised from
instrumental noise, which is an accumulated charge on
CCD pixels due to a dark current, by using the wavelet-
based noise extraction method [8, 12]. The ring-shaped
profile produced at 5 μs is distorted by the diocotron in-
stability [10] within a few μs, and eventually 5 high den-
sity vortex patches are generated at 13 μs. After the for-
mation of the first vortex patches, the successive mergers
among the patches proceed spontaneously up to the for-
mation of a single vortex, accompanied by a generation
of filamentary structures that evolve toward smaller length
scales. The concentrated patches rotate expelling filamen-
tary structures from the central region, and finally form a
stable distribution of a bell-shaped core profile surrounded
by a low density halo at 200 μs.

This relaxation process is characterized by the inte-
gral quantities of the vorticity (∝ n(x, y)). Figure 2 shows
the time evolution of some integrals calculated from the
measured density distribution n. Each integral is normal-
ized to unity. The calculated integrals are the electrostatic
energy E = 1/2

�
d2rn(−eφ), the total electron number

N =
�
d2rn, the enstrophy Z2 = 1/2

�
d2rn2 and the

palinstrophy P = 1/2
�
d2r|∇n|2. Here, φ is the self elec-

trostatic field calculated from n(x, y) [11]. The palinstro-
phy is a measure of the fine-scale structures in the turbu-
lence [7, 13].

Throughout the whole process, E and N do not show
any systematic change except 5% variations probably at-
tributed to shot-by-shot fluctuations in the production of
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Fig. 2 Time evolution of energy E (•), total electron number N
(�), enstrophy Z2 (�) and palinstrophy P (♦). Each inte-
gral is normalized to unity.

the initial distributions. Therefore these integrals may be
considered to be invariant. In contrast, Z2 and P show un-
ambiguous systematic changes. The enstrophy Z2 under-
goes a substantial decaying through the merging process,
and finally goes down to 60% of the initial value. The
palinstrophy P shows a rapid increase while vortex merg-
ers are active, and is maximized at 31 μs when the fila-
mentary structures are the most conspicuous outside the
high density central region as shown in Fig. 1. After the
maximization, P drops steeply, which indicates the decay
of the fine-scale structures.

In order to estimate the degree of enstrophy dissipa-
tion, we evaluate an effective viscosity coefficient ν using
the relation DZ2/Dt = −2νP derived from the Navier-
Stokes equation [7, 13]. By introducing the experimental
values into this equation, the effective viscosity ν is evalu-
ated as 0.01 ± 0.003 m2s−1. This experimental evaluation
agrees with the theoretically predicted coefficient within
a factor of 3, which is estimated by introducing the pa-
rameters of the present experiment into the proposed for-
mula [14].

4. Spectral Dynamics in 2D Turbulence
The observed vortex dynamics in the physical space

corresponds to the time evolution of the energy spectrum
E(k) in the wave-number space shown in Fig. 3 (a). E(k)
is determined from the Fourier transformed density distri-
bution n(k) =

�
d2re−ik·rn(r) as

E(k) =
1
2

�
e
ε0B0

�2 � 2π

0
kdϕ
|n(k)|2
k2
, (1)

where ϕ is the azimuthal angle of k (recall the relation ζ =
en/ε0B0).

When the first vortex patches are generated from the
ring distribution at 13 μs, the spectrum has a local maxi-
mum around the injection scale k = kin j ≈ 500 consistent
with the size of the patches. Along with the subsequent
mergers between patches (t = 13 ∼ 31 μs), the energy spec-
trum broadens upward and shows a power-law scaling of
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Fig. 3 (a) Time evolution of the energy spectrum calculated from the measured density distributions. Numbers at the upper left corner
stand for the time of the observation. (b) Time evolution of the upward transfer rates of the energy ε(k) (dashed line) and enstrophy
η(k) (solid line) through k.

k−α in the wave-number region larger than kin j. The slope
of the spectrum in the interval 700 ≤ k ≤ 5000 is drawn
in Fig. 3 (a). Throughout the merging process, the power
index α remains around 5, apparently larger than the the-
oretically predicted value of 3 [7]. In the decaying phase
associated with the reduction in the palinstrophy (t > 31
μs), the energy decreases steeply in the large wave-number
region of k > 1000, and concentrates at k = kcore ≈ 300
which corresponds to the size of the core in the final state
(t = 200 μs).

The upward transfer rate of the energy ε(k) through
k is evaluated from the time-resolved energy spectra in
Fig. 3 (a) as

ε(k) = −
� k

kmin

dk
∂E(k)
∂t
,

where the lower integration limit kmin corresponds to the
wall diameter. The enstrophy transfer rate η(k) is evaluated
similarly from the enstrophy spectrum Z(k) = k2E(k). The
time evolution of ε(k) and η(k) during the period when E(k)
shows a power-law scaling is shown in Fig. 3 (b). Both in
the energy and enstrophy, the transfer rates are maximized
at 25 μs when the density configuration changes drastically
from separated vortex patches to a single-peak distribution.

These spectra shows the characteristic features of 2D
turbulence: The enstrophy is transferred upward in the
wave-number space with k ≥ kin j, while the energy cas-
cades toward lower wave-numbers and its transfer rate is
maximized around kcore at each time. In particular, over the
wide range of k > 1500, η(k) is almost constant as assumed
in the 2D turbulence theory [7]. The rate is estimated as
η ≈ (0.52 − 2.2) × 1014 s−3 in Fig. 3 (b). By combining

the η and the effective viscosity ν evaluated in the previous
section, the dissipative scale ld is estimated to be 0.57±0.07
mm according to the expression ld ≈ η−1/6ν1/2 [7,13]. This
length is consistent with the thickness of the filamentary
structure at the end of spiral arms shown in Fig. 1, and in
the wave-number space, this scale k = kd ≈ 5500 corre-
sponds to the upper limit of the power-law scaling in E(k)
as shown in Fig. 3 (a).

In contrast to the large wave-number region, in the in-
termediate scale kin j ≤ k ≤ 1500, η(k) decreases to zero
around kin j from a constant value at k > 1500, which in-
dicates the inhibition of the enstrophy cascade. This ob-
servation corresponds to the vortex dynamics observed in
Fig. 1, i.e., the filamentation of vortex structures is limited
to the outside region of the patches. The constraint of the
enstrophy cascade by the coherent vortices has been ob-
served by numerical simulations [15]. This breakdown of
the cascade model is considered as a reason why the power
index of the energy spectrum E(k) is larger than the theo-
retical prediction of α = 3 [7].

5. Wavelet Analysis of Turbulent Structures
From the preceding analysis based on the Fourier ex-

pansion, it has been confirmed that the observed relaxation
process proceeds qualitatively according to the enstrophy
cascade process proposed by the 2D turbulence theory [7].
However, there remains uncertainty in understanding how
the spectral dynamics is connected to the vortex dynam-
ics in the physical space. This uncertainty is attributed to
the inherent nature of the Fourier transform that loses the
information on the spatial coordinates of the vortex struc-
tures. In order to resolve this difficulty, in this section, we
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apply the wavelet analysis to the same data set, and inves-
tigate the spectral transport in connection with the vortex
dynamics in the physical space.

5.1 Multiresolution analysis of density dis-
tribution

First, we decompose the density distribution n(x, y)
into an orthogonal wavelet series from the smallest scale
2−(J−1) to the largest scale 20 (where J = log2

√
N = 9

and N is the total pixel number 512×512) using a two-
dimensional multiresolution analysis [9, 12] given as

n(x, y) = n̄00,0φ
0
0,0(x, y)

+

J−1�
j=0

2 j−1�
ix=0

2 j−1�
iy=0

3�
μ=1

ñμ, jix,iy
ψ
μ, j
ix,iy

(x, y),

φ
j
ix,iy

(x, y) = φ j
ix
(x)φ j

iy
(y), ψ1, jix,iy

(x, y) = φ j
ix
(x)ψ j

iy
(y),

ψ
2, j
ix,iy

(x, y) = ψ j
ix
(x)φ j

iy
(y), ψ3, jix,iy

(x, y) = ψ j
ix
(x)ψ j

iy
(y),

where φ j
ix
(x) and ψ j

ix
(x) are the scaling function and the

corresponding wavelet, respectively. Due to the orthogo-
nality, the wavelet coefficient ñμ, jix,iy

at scale 2− j and position

(ix, iy) is given by ñμ, jix,iy
=
�
n, ψμ, jix,iy

�
=
�
n(r)ψμ, jix,iy

(r)dr, and
ñ00,0 =

�
n, φ00,0

�
corresponds to the mean value of the den-

sity.
In this paper, we employ the Coiflet order 12 wavelet

in terms of compact-support, symmetry, smoothness,
the number of vanishing moments and calculation effi-
ciency [9, 16]. The inner product �·, ·� is performed with
the periodic boundary condition, so that in the low wave-
number range the shape of the spectrum is different from
that of the spectra shown in Fig. 3 (a) which were calcu-
lated with the experimentally imposed boundary condition.
Nevertheless, as far as we examine the spectra in the wave-
number space above kin j, the spectral structure is confirmed
to be consistent with the previous one.

5.2 Spatial dynamics of enstrophy spectrum
From the wavelet coefficients ñμ, jix,iy

thus obtained, we
evaluate the spatial distribution of the enstrophy spec-
trum Z̃2(x, k j) of wave number k j = k02 j at coordinate
x = (ix, iy)29− jΔx as follows [16, 17]:

Z̃2(x, k j) =
1
2

�
e
ε0B0

�2 3�
μ=1

(ñμ, jix,iy
)2
�
Aj,

where

Aj = Δk jΔx2j ,

Δx j = 29− jΔx, Δk j =

�
k j+1k j −

�
k jk j−1.

Δx = 0.1 mm is the smallest resolvable scale on the
CCD image, and k0 is determined by the filtering prop-
erty of the Fourier-transformed wavelet and scaling func-
tion. Z̃2(x, k j) is defined as the density of the enstrophy per
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Fig. 5 Contours of the the local enstrophy spectrum Z̃2(x, k j) for
scales j=3-6 corresponding to the density distributions at
each time step (left panels). Z̃2(x, k j) is plotted in a loga-
rithmic scale and the greyscale of contours is proportional
to the amplitude.

unit area Δx2j and per unit wave-number range Δk j, so that�
μ (ñ

μ, j
ix,iy

)2 is divided by the factor Aj [17].
The spectrum obtained from the wavelet coefficients

corresponds to the Fourier-based spectrum Z2(k), as shown
in Fig. 4. Here, the wavelet-based enstrophy spectrum
is obtained by summing Z̃2(x, k j) over all positions, as
Z̃2(k j) =

�
ix,iy Z̃2(x, k j)Δx2j . Z̃2(k j) agrees quite well with

the Z2(k), and the scales j=3-6 correspond to the inertial
range kin j ≤ k ≤ kd.

The contour of the local enstrophy spectrum Z̃2(x, k j)
for scales j=3-6 at each time step is plotted in Fig. 5 to-
gether with the corresponding density distribution. The
vortex patches are characterized by Z̃2(x, k j) at j=4, and
those coherent properties, spatial locality and high vortic-
ity, are retained throughout the merging process among
the patches (13 ≤ t ≤ 31 μs). At smaller scales of j=5-
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6, Z̃2(x, k j) is dominant in the interacting region of the
patches, and extends spatially along with the filamentation
of vortex structures. At the end of the merging process
at t =31 μs, while the scales j=5-6 are developed the most
extensively, Z̃2(x, k j) at j=3 is sharpen accompanied by the
formation of a single-peaked distribution. In the decaying
phase at t >31 μs, the amplitude of Z̃2(x, k j) at j=3 is con-
centrated in the central core region, and the enstrophy at
scales j=4-6 decrease due to the decay of the fine-scale
structures.

The time evolution of the enstrophy Z̃2(k j) at each
length-scale is shown in Fig. 6. Throughout the merging
process, while Z̃2(k j)s at j=2-3 decrease, Z̃2(k j) at j=4 re-
mains almost constant. At smaller scales of j=5-6, Z̃2(k j)s
show a rapid increase and reach the maximum at 31 μs, like
the palinstrophy shown in Fig. 2. This temporal behavior
is consistent with the observation of Fig. 5. The successive
change of the enstrophy at each length-scale supports the
physical interpretation that the enstrophy cascade process
proceeds through the filamentation of the vortex structures.

5.3 Effect of coherent vortices on spectrum
As shown in Sec. 4, a long-time persistence of the co-

herent patches inhibits the cascade of the enstrophy, and, as
observed in numerical studies [15], this influence causes
the slope of the energy spectrum E(k) to be steeper than
the theoretical prediction of k−3 [7]. In this section, we ex-
amine contributions of the coherent vortices to the energy
spectrum by extracting those components from the density
distribution [18].

To extract coherent vortices from a turbulent field, var-
ious methods have been proposed, a lot of which is per-
formed by clipping the vorticity field using a threshold
criterion (see Ref. [13] in Sec. 3). However, the clipping
method introduces discontinuities in the vorticity distribu-
tion and incorporates spurious components to the Fourier
spectrum causing a wrong scaling. For this reason, in
this paper, we extract the coherent component in terms
of wavelet coefficients based on a threshold criterion [18].
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Fig. 7 An example of the extraction result with the threshold
of 88.2%. (a) 2D profiles of the coherent component
nC(x, y) (left) and the filamentary component nF(x, y)
(right). (b) 1D profiles of the density distribution n(x, 0)
(gray line), nC(x, 0) (solid line) and nF(x, 0) (dashed line)
along the chord y = 0. (c) Energy spectra of n (gray line),
nC (solid line) and nF (dashed line).

Because wavelet coefficient are localized in both physical
and wave-number spaces, the influence of the extraction
does not reach the overall spectrum profile.

An example of the extraction result is shown in Fig. 7.
Here, the threshold is determined as a rate of the enstrophy
accounted by the coherent component. In Fig. 7, we recon-
struct the coherent component nC(x, y) from the largest co-
efficients containing 88.2% of the total enstrophy (6 ×108
m2/s2), and the filamentary component nF(x, y) are con-
structed from the remaining coefficients. The reason for
this discrimination is discussed later. Due to the orthog-
onality of the wavelet functions, the density distribution
n(x, y) can be decomposed as n(x, y) = nC(x, y) + nF(x, y).
The 2D and 1D profiles (Fig. 7 (a, b)) demonstrate a clear
contrast between the bulk distribution of nC and the highly
structured distribution of nF . Each energy spectrum (Fig. 7
(c)) shows the power-law scaling E(k) ∝ k−α with α = 5.5
for nC , and α = 3 for nF over a wide domain in the wave-
number space, which is consistent with the theoretically
expected index [7].

In the present study, we cannot determine an appro-
priate threshold based on a definite criterion [18]. There-
fore we carry out the separation with various trial values
of threshold ranging from 80 to 100%, and compare the
shapes of the spectra for the coherent and filamentary com-
ponents. Comparison is made in Fig. 8 for each component
in terms of the power index α estimated from a linear least-
square fit to log-log plot of the energy spectrum E(k) ∝ k−α

in the wave-number region of 700 ≤ k ≤ 5000.
The slope of the spectrum for the filamentary com-

ponent varies continuously from the power index α = 3.6
representing the total spectrum, down to 1 characterizing
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the white noise (see Eq.(1) for n(k) = const.). In contrast,
the spectrum for the coherent component shows the power-
law scaling when the threshold is set above 88.2%, and
the index decreases continuously from 5.6 down to 3.6 as
the threshold increases. For the threshold below 88%, the
spectrum becomes oscillatory due to the reduction of the
number of wavelet coefficients, and the power-law behav-
ior is lost. The observed transition in the energy spectrum
suggests that the appropriate threshold should lie around
88.2%. The distributions plotted in Fig. 7 are based on this
discrimination. Although there remain some ambiguities
in determining a threshold, this experimental result shows
that the steepness of the energy spectrum increases with
increasing fraction of the coherent component in the total
structure.

6. Conclusion
In this paper, we have examined the relaxation pro-

cess of 2D turbulence in a magnetized pure electron plasma
over a wide range of length scales extending from the in-
jection scale down to the dissipative scale. In the stage
characterized by the successive mergers among vortex
patches starting from the unstable initial density profile,
the Fourier-based analyses have revealed that the spectral
dynamics of the energy and enstrophy in the wave-number
space exhibits the characteristic features of the 2D turbu-
lence: While the energy is transfered downward, the en-
strophy undergoes an upward transport starting from the
injection wave-number kin j. In smaller length scales with
k > 3kin j, the transfer rate of the enstrophy is observed to
be constant, and the energy spectrum shows a power-law
scaling E(k) ∝ k−α in the broad inertial range kin j ≤ k ≤ kd
with α larger than the theoretical prediction of 3.

This spectral dynamics have been connected directly
to the vortex dynamics in the physical space by apply-
ing the wavelet analysis to the observed density distribu-
tion. Taking advantage of the simultaneous resolution in
the physical and wave-number spaces, we have confirmed

that the observed enstrophy cascade proceeds through the
filamentation process of the vortex structures. Moreover,
by extracting the coherent structures from the turbulent
field in terms of the wavelet coefficients, we have shown
that the coherent vortices make a significant contribution
to the steepening of the energy spectrum, and the extracted
field has the spectrum following the power-law scaling
E(k) ∝ k−α with α ≈ 3 as expected in the 2D turbulence
theory.
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