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Aiming at simulating the dynamics of plasma consisting of multiple phases, a new immersed interface method 
(IIM) scheme to solve multiphase flows with viscosity and density jumps is being developed. A numerical 
technique to solve the equations of the jump conditions is developed. The validity of the formulations and the 
numerical technique is confirmed by a numerical test. 
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1. Introduction 
Complex behaviors of a thermal plasma in a magnetic 

confinement device such as the Large Helical Device 
(LHD) have been studied through numerous Magneto- 
hydrodynamics (MHD) simulations. (See Refs.[1,2], for 
example). In numerical studies of a thermal plasma, there 
are increasing requirements to study peripheral regions and 
hot plasma core simultaneously. One typical approach for 
this purpose is to describe the vacuum region by MHD 
equations with very low pressure and/or mass density, 
assuming very high resistivity and/or viscosity in the low 
pressure region. However, numerical oscillations often 
result from the jumps of physical quantities such as mass 
density, pressure and temperature. Although it is possible 
to avoid such oscillations by using numerical techniques 
such as the Godunov/CIP or TVD schemes (for example, 
see Refs.[3,4]), it often complicates the computation 
program and obscures the numerical accuracy. 

An alternative simulation approach which can avoid 
some of the difficulties is found in the Immersed Interface 
Method (IIM). The IIM is a class of numerical methods for 
solving differential equations that involve complex 
interfaces. The IIM can capture discontinuities in the 
solution and the flux accurately, preserving the sharpness 
of the interface. Originally developed for solving elliptic 
equations such as Poisson equations, it has been extended 
and applied to various other problems including the 
simulation of incompressible flows with moving interfaces 
[5]. The IIM has the following essential properties [5]: (1) 
jump conditions are either known from physical reasoning 
or derived from the governing equations, and (2) using the 
jump conditions, finite difference approximations at grid 
points near the interface are modified. 

In the IIM, it is assumed that there is a surface 
separating two regions or two fluids that the fluid(s) cannot 

flow across (for two-dimensional flows, a curve). We refer 
to the surface as the singular surface. On this singular 
surface, a singular force such as surface tension or elastic 
tension acts. In plasma dynamics, the cage of magnetic 
field lines separating the hot plasma core from the 
peripheral regions can be modeled as a singular surface. 

Recently, an IIM technique to solve the 
incompressible flow of a neutral fluid separated into two 
regions by a singular surface was developed by Xu and 
Wang [6,7]. Although they have shown that the IIM can 
work well to simulate fluid motions, their formulations and 
techniques are limited to flows with uniform viscosity and 
density. Since our final objective is to apply the IIM to 
fusion plasma simulations, it is essential to provide 
formulae valid for flows with viscosity and/or density 
jumps. The jump conditions in a multiphase 
incompressible flow, where the viscosity and the mass 
density jump across the singular surface, were derived in 
Ref.[8]. In the present paper, we restrict ourselves on the 
IIM for the neutral fluid system because the equations of 
motions are much simpler than those in the MHD 
equations, and develop a numerical technique to solve the 
equations of the jump conditions derived there. The jump 
conditions obtained are then used for computing 
derivatives according to the IIM discretization scheme. Our 
technique can be used to develop a scheme for solving 
non-steady multiphase flows. 
 

2. Governing Equations and IIM Discretization 
We concentrate on two-dimensional (2D) flows of 

two different fluids separated by a closed curve. A 
schematic description of the model is given in Fig.1. The 
fluid density � and the viscosity �  are piecewise 
constant in �� and �� . A singular force acts on the 
closed curve C ,sustaining the separation of the two fluids. 
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The nondimensional incompressible Navier-Stokes 

equations including a singular force are 
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where u  is velocity, p  is pressure, t  is time, Re  is 
the Reynolds number, and F  is the singular force. 
Denoting the coordinates of the curve C  by X , the 
singular force is given by 
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C
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where �  is a Lagrangian parameter parametrizing the 
curve at a reference time, � �t,�f  is the curve force 
density, and � �� �t,�� Xx �  is a two-dimensional Dirac 
delta function. Since the singular curve moves with the 
local fluid velocity, the time evolution of � �t,�X  is 
governed by the following equation 
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Taking the divergence of eq. (1), the following Poisson 
equation for the pressure is obtained. 
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The IIM finite difference discretization developed by 
Xu and Wang [6] can be used to solve these governing 
equations numerically on a fixed Cartesian mesh. Here, the 
IIM discretization is described briefly. The derivation can 
be found in Ref.[6]. 

Let � �x�  be a function that is smooth except at 
discontinuity points �  and � . Let the variable x  be 
dicretized equidistantly, and the discontinuity points be 
located at ii xx ��� �1  and 1��� ii xx � . Then, the first 

and second derivatives of � �x�  at ix  are given by 
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where iiii xxxxh ���� �� 11 , and � � �� ����� denotes 
the jump of a quantity �  across a discontinuity (the 
jump condition for a quantity). 

The spatial derivatives appearing in the governing 
equations can be approximated using eqs. (6) and (7), only 
if the jump conditions for the velocity, pressure, and their 
first and second order spatial derivatives are known. Thus, 
to solve the governing equations by the IIM, it is necessary 
to obtain these jump conditions.  
 

3. Equations of the Jump Conditions and 
Numerical Technique to Solve Them 

To simplify the eventual technique to solve the 
equations of the jump conditions, we transform the 
velocity into a scaled velocity defined as 

,uv ��                               (8) 
with components denoted by 

� � ., vu�v                              (9) 
Moreover, we introduce augmented variables defined only 
on the singular curve C  

� � � �� � � � � �� � ,,,,, ���� ��� vvuutqtq yx ��     (10) 

where the superscript + (or - ) denotes the ��  (or �� ) 
side. Using the scaled velocity, the Navier-Stokes 
equation and the pressure Poisson equation are given by 
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for C�x , where .v���D  
We also introduce quantities related to the geometry 

of curve C . Henceforth, let subscript x (or y) denote the 
x (or y) component of a vector. The tangent vector �� , 
the unit tangent vector � , and the unit normal vector n  
are given by 

,,,
J
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Fig.1  Schematic description of two fluids separated by a 
singular curve. 
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� �., xy �� ��n                            (14) 
See Fig.1 for a schematic description. 

In Ref.[8], the systems of equations of the jump 
conditions in three-dimensional (3D) flows were derived 
analytically. The equations in 2D flows can be obtained 
from the equations in 3D flows by considering one 
coordinate direction as uniform. Denoting the jump 
condition of a quantity �  by 

� �� � � �� � � �� �,,,,,, ttttt ������ XX �� ��      (15) 
they are given as follows: 
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where the new quantities appearing on the right hand sides 
of the above equations are defined by: 
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In addition to these equations, there is also the jump 
condition that follows from the continuity of the 
(non-scaled) velocity 

.0���
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Now we describe a numerical technique to solve the 
above equations for all of the unknowns. Henceforth, for 
simplicity, we let ��� �� �� . Moreover, it is assumed 
that the force density f  is either known a priori or 
determined by the local geometry of the singular curve. 
Fig. 2 shows a part of the Cartesian grid in the vicinity of 
the singular curve. Dashed lines represent grid lines, and 
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X’s represent Lagrangian markers. Coordinate axes are 
taken as shown. Points K, M, N are grid points, while point 
L is the intersection of a grid line with the singular curve. 
Let ,, �� �� hLMhKL  and .hMN �  

 

 
 

Applying Taylor expansion (truncated at third order) 
and eq. (29) at point L, the following three equations can 
be derived: 
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obtained from these equations. Note that at every 
intersection point of a grid line with curve C , similar 
equations hold. 

Notice that if q  and f are known at all intersection 
points, provided that derivatives with respect to �  can 
be obtained, eqs. (17)-(21) can be solved for the other 
jump conditions. However, despite the fact that q  
originally must be a smooth function of � , q  obtained 
point-by-point from eqs. (30)-(32) contain numerical 
noise. To remove this noise, we use the cubic spline 
approximation with smoothing method developed by 

Woltring [9] to compute derivatives with respect to � .  
Thus, eqs. (17)-(21) and (30)-(32) can be solved at all 

intersection points simultaneously by iterative computation. 
Assigning guess values for q , eqs. (17)-(21) are solved 
for the remaining jump conditions. Subsituting these 
solutions in eqs. (30)-(32), new values for q  are 
obtained. Using these as new guess values, the whole 
procedure is repeated again and again until convergence 
is achieved. 

We emphasize here that obtaining q  from eqs. (30)- 
(32) is an essential improvement to the interpolation 
technique in Ref.[8] to achieve sufficient accuracy. Since 
q ’s derivatives with respect to �  have lower accuracy 
than q  itself, it is important that q  is interpolated with 
high (third order) accuracy. An example showing the 
improvement brought about by the new interpolation 
technique is given in the Appendix. 
 

4. Numerical Test 
To confirm the validity of the above technique, a 

numerical test is performed. We consider the steady 
circular flow shown in Fig. 3. Fluid ��  and fluid ��  
are separated by a circle C  with radius a  centered at 
the origin of coordinates O . C  rotates steadily with 
angular velocity � . A regular Cartesian grid yx NN � , 
represented by dashed lines, encloses C . The grid’s 
non-adjacent vertices are � �wwA �� ,  and � �wwB , . 
� ��vvr ,  denotes the components of v  in polar 
coordinates � ��,r  and point P  represents an arbitrary 
point within the grid. 
 

 
 

The analytical solution of the flow is given by 
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Fig.2  Part of the regular Cartesian grid in the 
neighborhood of the singular curve. 
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Fig.3  Steady flow of two fluids separated by a rotating 

circle. Dashed lines represent grid lines. 
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The force density acting on the circle is 

,
Re

2,0 2 ���
���

a
ffn

             (35) 

At intersection points of grid lines with C , the force 
density is substituted. Then, we compute the jump 
conditions at the intersection points using the technique 
described in the previous section. These jump conditions 
are used to approximate spatial derivatives at neighboring 
points using the IIM discretization, i.e. eqs. (6) and (7). 
The IIM discretization is incorporated in a computational 
program for solving the governing equations. Our scheme 
uses the MAC method for time integration, and the SOR 
for solving the pressure Poisson equation. Using the 
analytical solution as initial and boundary conditions, we 
compute the time evolution of the circular flow until the 
singular curve makes one rotation. 

Here, we show some results for parameters given as 
follows: ,5.1,1,3Re ��� wa  ,1,7,1 ��� �� ���  

50,50,1 ��� yx NN� . Fig.4 shows the profiles of 
some of the jump conditions obtained. Horizontal axes 
represent � . Solid lines and dots represent analytical 
results and numerically obtained results, respectively. Figs. 
4(a) and 4(b) show the profiles of xq  and 

yq , 
respectively. Figs. 4(c) and 4(d) show the profiles of 
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It can be seen that the numerical results and the analytical 
results match very closely. This match is also obtained for 
the remaining jump conditions. 

Fig.5 shows the profiles of some derivatives on a grid 
line 3.0�y  as an example. Horizontal axes represent x . 
Solid lines and dots represent analytical and numerical 
results, respectively. The intersection point is at 

954.0��x . Figs. 5(a) and 5(b) show the profiles of u  and 

2
2

x
u
�

� , respectively. Figs. 5(c) and 5(d) show the profiles 

of v  and 
2

2

x
v
�

� , respectively. Figs. 5(e) and 5(f) show 

the profiles of p  and 
x

p
�

� , respectively. It can be seen 

that the numerical differentiations across the discontinuity 
approximate the analytical results well. On other grid lines, 
good approximations are also obtained. 

These results show that our formulations and the 
numerical technique work fairly well to approximate 
derivatives and solve the governing equations.  
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Fig.4  Profiles of jump conditions after one rotation of 
the singular curve. Horizontal axes represent � . 
Solid lines and dots represent analytical and 
numerically obtained results, respectively. 
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axes represent x . Solid lines and dots represent 
analytical and numerical results, respectively. 
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5. Concluding Remarks 
The IIM technique proposed in Ref.[8] has been 

improved and tested numerically. The validity of the new 
formulation and the numerical technique has been 
confirmed by a numerical test of steady circular flow. 
Having established this, a numerical technique using the 
IIM discretization for non-steady flows is currently being 
developed. Due to limitation of space, we only show 
numerical test results for one set of parameters. However, 
it may be worth noting that the validity of our formulation 
and the numerical technique has also been confirmed for 
larger Reynolds numbers (small viscous term). The 
numerical oscillation of pressure jump condition is 
suppressed more easily, leading to better convergence. It 
suggests that our technique can be applied for high 
Reynolds number flows more easily than to low Reynolds 
number flows. We also consider that our method for 
neutral fluids can be extended to thermal plasmas. This 
extension is also under consideration. 
 

Appendix 
We provide Fig. 6 to show that the accuracy of the 

solutions of the equations of the jump conditions is 
improved by the new interpolation technique. We are 
concerned with the jump conditions at the initial time in 
the circular flow of section 4 here. Fig. 6 shows the 
profiles of the jump condition for the pressure and its 
derivatives. Blue lines represent numerical results 
obtained using the technique in ref. [8]. Red lines 
represent numerical results obtained using eqs. (30)-(32). 
Black lines (which coincide with the red lines) are 
analytical results. The order of magnitude represented by 
the red line is 10-5 in Fig. 6a, and 10-4 in Figs. 6b and 6c. 
It can be seen from Fig. 6 that numerical oscillations are 
suppressed more easily by using the new interpolation 
technique. 
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Fig.6  Profiles of jump conditions for the pressure and 
its derivatives at initial time. Same parameters as 
Figs. 4 and 5. Horizontal axes represent � . 
(a): the pressure,  (b): the pressure’s derivative 
with respect to x,  (c): the pressure’s derivative 
with respect to y. Blue lines represent numerical 
results obtained using the technique in ref. [8].  
Red lines represent numerical results obtained 
using eqs. (30)-(32). Black lines (which coincide 
with the red lines) represent analytical results. 
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