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Monopole nonlinear drift-wave vortices in a viscous magnetized plasma are investigated by applying

a time-dependent finite element method of two-dimensional space to Hasegawa-Mima equation with
viscosity term. Under a periodic boundary condition in the direction of drift-wave propagation and a
natural boundary condition transverse to the propagation, the monopole drift-wave vortices of positive
potential tilt in the clockwise direction. The tilting angle depends on the value of initial localized

potential.
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1. Introduction

Hasegawa-Mima equation [1] is an important
equation in case of discussing plasma transport in a
magnetized plasma. This equation includes the drift-
wave propagation term and the nonlinear term leading
to vortex formation. Hasegawa-Mima equation with
viscosity term is written as follows.
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Here, normalization takes place as follows.
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Time ¢ is normalized by a reciprocal number of
angular cyclotron frequency w.. Spaces x and y are
normalized by ion-acoustic Larmor radius ps. vy is
drift-wave propagation velocity in the positive y di-
rection and is normalized by ion acoustic speed Cj.
Electric potential ¢ is normalized by electron temper-

ature T,. N is normalized viscosity coefficient.

2. Application of Time-dependent Fi-
nite Element Method

Time-dependent finite element method is appli-
cable to Hasegawa-Mima equation in linear case with-
out any problem. Figure 1 is an example of linear
monopole drift-wave propagation without viscosity.
The linear monopole drift-wave releases a wake in the
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Fig. 1 Linear monopole drift-wave propagation. a) Two-
dimensional structure of Potential ®, and b) density
profile along Y = 0, at times 7" = 0 and 7" = 400.
Linear monopole drift-wave emits a wake in the
backward direction. V,=0.1. N=0.

backward direction because of dispersion effect of lin-
ear drift wave. In this article, normalized drift-wave
speed is kept at a constant value of V,=0.1, and we
use a periodic boundary condition in the direction of
drift-wave propagation and a natural boundary con-
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Fig. 2 Propagation of a nonlinear drift-wave vortex in case
of the initial monopole positive potential ®¢=20.
The tilting angle §=22° at T = 400. V.,=0.1.
N=0.1. 6 depends on the value of initial localized
potential ®q.

dition transverse to the propagation.

In case of taking a nonlinear drift-wave monopole
into account, the time-dependent finite element
method gives rise to unstable calculation, where N=0.
The viscosity term with N=0.1, however, stabilizes
the calculation as shown in Fig. 2. Nonlinear
monopole drift-wave vortices have been investigated
in case with no viscosity [2, 3, 4]. W. Horton showed
only calculated figures of the tilting angle §=90° [2].
J.S. Hesthaven et al. [3] and J.J. Rasmussen et al. [4]
did not discuss the dependence of the tilting angle 6
on the amplitude of monopole vortices. Here, we show
their dynamics in case with finite viscosity and discuss
the dependence of 8 on the initial monopole potential
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®o of monopole vortices.

3. Dynamics of Nonlinear Monopole
Drift-Wave Vortices

Figure 2 shows the propagation of a nonlinear
drift-wave vortex in case of the initial monopole posi-
tive potential ®=20. The monopole drift-wave vortex
of positive potential tilts in the clockwise direction.
The tilting angle §=22° at T" = 400 in this case. 0
grows initially and decreases very slowly. The release
of a wake from the monopole is suppressed compared
with the linear case because of the vortex rotation.
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Fig. 3 The tilting angle 6 dependence on the value of
initial localized potential ®¢ at a time T = 400.
V.=0.1. N=0.1.

The tilting angle 6§ depends on the value of initial
localized potential ®( at a time 7" = 400 as shown in
Fig. 3. The positive and negative monopole vortices
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tilt in the clockwise and counterclockwise directions
respectively. The graph of tilting angle 6 versus the
value of initial localized potential @ at a time 7" = 400
is shown in Fig. 4.
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Fig. 4 The graph of tilting angle § dependence on the
value of initial localized potential &y at a time
T = 400. V,=0.1. N=0.1.

4. Conclusions

In summary, a time-dependent finite element
method of two-dimensional space is successfully ap-
plied to Hasegawa-Mima equation with viscosity term.
The viscosity term is necessary in order to suppress
calculation instability. The positive and negative
nonlinear monopole vortices in a viscous magnetized
plasma tilt in the clockwise and counterclockwise di-
rections respectively.
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