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A one dimensional fully kinetic model of a bounded plasma system that contains two electron populations
with drifting Maxwellian distributions is presented. These two groups of electrons are the hot electrons and the
electrons emitted from the collector. Both drifts even if they are relatively small have a strong effect on the
floating potential of the collector and other parameters.
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1. Introduction
Bounded plasma systems are important because of

their relevance in various areas of plasma technology as
well as in fusion research. For an extensive review on the
kinetic and particle simulation of the bounded plasma sys-
tems the reader is directed to the review paper by Kuhn [1].
A fully kinetic one-dimensional model developed for the
analysis of monotonic potential profiles in bounded plasma
systems for an arbitrary ion to electron temperature ratio
was presented by Schwager and Birdsall [2]. This model
turned out as very appropriate for various purposes and has
been used and modified by several authors [3] - [9]. Also
we have extended this model and included two additional
electron populations into it - the hot and the emitted elec-
trons [7] - [9]. It has been observed experimentally [10, 11]
that electron emitting electrodes may have triple floating
potentials in the presence of an additional energetic elec-
tron population. Our model qualitatively reproduces these
experimental results. This work presents further extension
of this model. A non-zero drift velocities are included into
the distribution functions of the hot and of the emitted elec-
trons. In addition a non-zero electric field at the source is
also included into the model. In the next section mathemat-
ical details of the model are presented. In section 3 some
preliminary results related to the finite drifts are shown and
in section 4 conclusions are given.

2. Model
An infinitely large planar electrode (collector) has its

surface perpendicular to the x axis and is located at x = 0.
This electrode absorbs all the particles that hit it. On the
other hand it may also emit electrons. This electron emis-
sion can be thermal or secondary triggered by the impact
of incoming electrons and/or ions. The details of the emis-
sion mechanism are not essential for the model.

An infinitely large planar plasma source has also its
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surface perpendicular to the x axis (figure 1). This source
is located at a certain distance x = L from the collector.
The distance L is not crucial for the results of the model.
This source injects 3 groups of charged particles into the
system: singly charged positive ions (index i), the cool
electrons (index 1) and the hot electrons (index 2). The
emitted electrons from the collector have index 3. The par-
ticles i, 1 and 2 are injected from the source with half-
maxwellian velocity distribution functions with tempera-
tures Ti, T1 and T2. Also the emitted electrons have a half-
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Fig. 1 Schematic of the model.

maxwellian velocity distribution function at the collector
with the temperature T3. In principle all four temperatures
may be arbitrary. The electrons emitted from e.g. emis-
sive probes or any other electron emitting electrodes are
very often treated as monoenergetic [3]. So in this work
we shall always assume that T3 � T1. The electrons 2 are
called the hot electrons. This implies T2 � T1. A non-zero
drift velocity v2 is included into the velocity distribution of
the hot electrons. The emitted electrons have a finite drift
velocity v3 in the direction towards the source. In an ex-
periment the emitted electrons could get a small non-zero
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initial velocity if predominant mechanism of the electron
emission is secondary emission and the emitted electrons
are kicked out of the collector surface by the impacting
particles with a finite initial velocity.

The potential profile Φ(x) is determined by the Pois-
son equation:

d2Φ
dx2

= −e0

ε0
(ni − n1 − n2 − n3) . (1)

where e0 is the elementary charge and ε0 is the permittivity
of free space.

The potential at the source is set to zero. We are only
interested in the solutions where the potential Φ(x) in-
creases monotonically from the value ΦC at the collector
to the zero value at the source. Because of that the electric
field everywhere in the system must be negative or zero.
The absolute value of the electric field at the source is la-
beled by EL. So the boundary conditions for the equation
(1) are:

Φ(x = L) = 0,
dΦ
dx

(x = L) = −EL. (2)

The ion velocity distribution function at some position x

between the source and the collector is given by:

fi = ni

�

mi

2πkTi
exp

�

− e0Φ(x)
kTi

�

×
×exp

�

−miv
2

2kTi

�

.
(3)

Here mi is the ion mass and ni is the density that the ions
would have at the source if their velocity distribution there
was fully maxwellian and k is the Boltzmann constant. The
distribution function for the cool electrons is given by:

f1 = n1

�

me

2πkT1
exp

�

e0Φ(x)
kT1

�

×
×exp

�

−mev2

2kT1

�

.
(4)

Here n1 is the density that the cool electrons would have
at the source, if their velocity distribution there was fully
maxwellian. For the hot electrons the distribution function
is written in a similar way. But one must take into account
that the hot electrons have a finite drift velocity v2 towards
the collector:

f2 = n2

�

me

2πkT2
exp

�

e0Φ(x)
kT2

�

×
×exp

�

−me(v+v2)
2

2kT2

�

.
(5)

Here n2 is is the density that the hot electrons would have
at the source, if their velocity distribution there was fully
maxwellian. The emitted electrons have a finite drift ve-
locity v3 towards the source, so their distribution function
is written as:

f3 = n3

�

me

2πkT3
exp

�

e0(Φ(x)−ΦC)
kT3

�

×
×exp

�

−me(v−v3)
2

2kT3

�

.
(6)

Here n3 is is the density that the emitted electrons would
have at the collector, if their velocity distribution there was
fully maxwellian.

The potential of the collector is ΦC . We assume that
the plasma is collisionless and the energy and the flux of
the particles are conserved. An ion that is born at the
source with zero velocity has at the distance x from the
collector the velocity:

vmi = −
�

−2e0Φ(x)
mi

, (7)

in the direction towards the collector. Because of this a
negative sign is in front of the square root. So the ion ve-
locity distribution function (3) actually has a cutoff at vmi

given by (7). Something similar is valid for the electrons.
An electron that leaves the collector with a negligibly small
initial velocity will have at the position x the velocity

vme =

�

2e0 (Φ(x) − ΦC)
me

, (8)

in the direction towards the source. So the electron velocity
distribution functions (4)-(6) have a cutoff at vme given by
the (8).

The following variables are introduced:

μ = me

mi
, τ = Ti

T1
, Θ = T2

T1
,

σ = T3
T1

, Ψ = e0Φ(x)
kT1

,

ΨC = e0Φ(x=0)
kT1

= e0ΦC

kT1
,

α = ni

n1
, β = n2

n1
, ε = n3

n1
,

v0 =
�

2kT1
me

, u = v
v0

, u2 = v2
v0

, u3 = v3
v0

,

ume = vme

v0
=

√
Ψ − ΨC ,

umi = vmi

v0
= −√−μΨ.

(9)

With these variables the distribution functions (3) - (6) are
written in the following way:

Fi (u, Ψ) =
α√
πτμ

exp
�

−Ψ
τ

�

exp
�

− u2

μτ

�

,(10)

F1 (u, Ψ) =
1√
π

exp (Ψ) exp
�−u2

�

, (11)

F2 (u, Ψ) = β√
πΘ

exp
�

Ψ
Θ

�×
× exp

�

− (u+u2)
2

Θ

�

,
(12)

F3 (u, Ψ) = ε√
πσ

exp
�

Ψ−ΨC

σ

�×
× exp

�

− (u−u3)
2

σ

�

.
(13)

The distribution functions (10)-(13) are normalized to the
density that the cool electrons would have at the source, if
their velocity distribution there was fully maxwellian:

n1

�

me

2πkT1

∞
�

−∞
exp

�

−mev
2

2kT1

�

dv = (14)

=
1√
π

n1

v0

∞
�

−∞
exp

�

−v2

v2
0

�

dv = n1 ≡ 1.
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The zero moments of the distribution functions give
the particle densities, while the first moments give the par-
ticle fluxes. Integration over the velocity u goes only to the
respective cutoff velocities umi and ume.

Ni (Ψ) =
−
√

−μΨ
�

−∞
Fi (u, Ψ) du, (15)

Ji (Ψ) =

−
√

−μΨ
�

−∞
uFi (u, Ψ) du, (16)

N1 (Ψ) =

√
Ψ−ΨC
�

−∞
F1 (u, Ψ) du, (17)

J1 (Ψ) =
−√

Ψ−ΨC
�

−∞
uF1 (u, Ψ) du, (18)

N2 (Ψ) =

√
Ψ−ΨC
�

−∞
F2 (u, Ψ) du, (19)

J2 (Ψ) =
−√

Ψ−ΨC
�

−∞
uF2 (u, Ψ) du, (20)

N3 (Ψ) =
∞
�

√
Ψ−ΨC

F3 (u, Ψ) du, (21)

J3 (Ψ) =
∞
�

√
Ψ−ΨC

uF3 (u, Ψ) du, (22)

Note that in (18) and (20) we have integrated only over the
velocity of those electrons that actually reach the collector
and are not repelled back into the system.

The densities (15), (17), (19) and (21) are inserted into
the Poisson equation (1). The following equation is ob-
tained:

d2Ψ
dz2 = −α

2 exp
�

−Ψ(z)
τ

�

erfc
�

�

−Ψ(z)
τ

�

+

+1
2exp (Ψ (z))

�

1 + erf
�

�

Ψ(z) − ΨC

��

+

+β
2 exp

�

Ψ(z)
Θ

�

�

1 + erf
�

u2+
√

Ψ(z)−ΨC√
Θ

��

+

+ ε
2 exp

�

Ψ−ΨC

σ

�

erfc
�√

Ψ(z)−ΨC−u3√
σ

�

,

(23)

where

erf (x) = 2√
π

x
�

0

exp
�−t2

�

dt,

erfc (x) = 2√
π

∞
�

x

exp
�−t2

�

dt.

The space coordinate x has been normalized to the
Debye length λD in the following way:

z =
x

λD
, λD =

�

ε0kT1

n1e2
0

. (24)

The boundary conditions (2) become:

Ψ
�

z =
L

λD

�

= 0,
dΨ
dz

�

z =
L

λD

�

= −η,(25)

where

η =
EL

kT1
e0λD

= EL

�

ε0

kT1n1
. (26)

At some point (z = z0) between the collector and the
source, the plasma is quasi-neutral and the potential at that
point is Ψ(z = z0) = ΨP . From the Poisson equation the
neutrality condition can therefore be derived in the follow-
ing form:

�

d2Ψ
dz2

�

z=z0

= −αexp
�−ΨP

τ

�

erfc
�

�

−ΨP

τ

�

+

+exp (ΨP )
�

1 + erf
�√

ΨP − ΨC

��

+

+β exp
�

ΨP

Θ

�

�

1 + erf
�

u2+
√

ΨP −ΨC√
Θ

��

+

+ε exp
�

ΨP −ΨC

σ

�

erfc
�√

ΨP −ΨC−u3√
σ

�

= 0.

(27)

It is known that

1
2

d

dz

�

dΨ
dz

�2

=
dΨ
dz

d2Ψ
dz2

.

So the Poisson equation (23) is multiplied by dΨ/dz. The
differentials dz cancel out and the equation can be inte-
grated once over the potential from Ψ = 0 (at z = L/λD) to
Ψ = ΨP (at z = z0):

�

dΨ
dz

�2

Ψ=ΨP
− (−η)2 =

= −α
2

� ΨP

0
exp

�−Ψ
τ

�

erfc
�
�

−Ψ
τ

�

dΨ+

+ 1
2

� ΨP

0
exp (Ψ)

�

1 + erf
�√

Ψ − ΨC

��

dΨ+

+β
2

� ΨP

0
exp

�

Ψ
Θ

�

�

1 + erf
�

u2+
√

Ψ−ΨC√
Θ

��

dΨ+

+ ε
2

� ΨP

0
exp

�

Ψ−ΨC

σ

�

erfc
�√

Ψ−ΨC−u3√
σ

�

dΨ =

= −η2.

(28)

Since the second derivative of the potential at Ψ(z =
z0) = ΨP is zero, the first derivative, which is proportional
to the electric field, is a constant. Since L � λD, the elec-
tric field at Ψ(z = z0) = ΨP may be set to zero.

If the emission of the electrons from the collector in-
creases, eventually the density of the emitted electrons in
front of the collector becomes so high, that the electric field
at the collector becomes zero. In this case the emission is
space charge limited, or critical. The value of ε, at which
the electric field at the collector becomes zero, is called the
critical emission coefficient. This fact can be used to de-
rive another expression relating ΨP and ΨC . This relation
is called zero field condition at the collector and is derived
in very similar way as the zero field condition at the inflec-
tion point (28). In fact only the boundaries of the integra-
tion are changed. The integration goes from Ψ = ΨP (at
z = z0) to Ψ = ΨC (at z = 0). This gives:

�

dΨ
dz

�2

Ψ=ΨP
− �

dΨ
dz

�2

Ψ=ΨC
=

= −α
2

� ΨC

ΨP
exp

�−Ψ
τ

�

erfc
�
�

−Ψ
τ

�

dΨ+

+ 1
2

� ΨC

ΨP
exp (Ψ)

�

1 + erf
�√

Ψ − ΨC

��

dΨ+

+β
2

� ΨC

ΨP
exp

�

Ψ
Θ

�

�

1 + erf
�

u2+
√

Ψ−ΨC√
Θ

��

dΨ+

+ ε
2

� ΨC

ΨP
exp

�

Ψ−ΨC

σ

�

erfc
�√

Ψ−ΨC−u3√
σ

�

dΨ = 0.

(29)
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The particle fluxes are given by the equations (16),
(18), (20) and (22). Ji, J1 and J2 have negative sign
because of their direction towards the collector, while J3

has positive direction towards the source. If the negative
charge of the electrons and the positive charge of the ions
is taken into account, the total electric current density Jt to
the collector is given by:

Jt = −α
2

�

μτ
π − ε

2
√

π
exp

�

Ψ−ΨC

σ

�×

×

⎡

⎢

⎣

√
σ exp

�

− (
√

Ψ−ΨC−u3)2

σ

�

+

+u3
√

πerfc
�√

Ψ−ΨC−u3√
σ

�

⎤

⎥

⎦
+

+ 1
2
√

π
exp (ΨC) + β

2
√

π
exp

�

Ψ
Θ

�×

×

⎡

⎢

⎣

√
Θ exp

�

− (
√

Ψ−ΨC−u2)2

Θ

�

+

+u2
√

πerfc
�√

Ψ−ΨC−u2√
Θ

�

⎤

⎥

⎦
.

(30)

In this way the direction of the electric current is defined
in technical sense.

The neutrality condition (27), the zero electric field
condition at the inflection point (28), the zero electric field
condition at the collector (29) and the expression for the
current density to the collector (30) form the basis of the
model. The parameters that in an experiment are deter-
mined by the selection of the gas, the method of the plasma
production and the material properties of the collector are
selected as independent parameters of the model. These
parameters are the ion mass μ the density and temperature
ratios β, Θ, τ and σ, the drift velocities u2 and u3 and the
electric field at the source η. If the emission is below the
space charge limit, ε is also a given, independent parame-
ter. In such a case the equations (27), (28) and (30) form
a system of 3 equations for 3 unknown quantities. If the
collector is floating, these quantities are the floating poten-
tial of the collector ΨC , the potential at the inflection point
ΨP and the neutralization parameter α. If the collector is
floating, Jt in (30) is set to zero. If a given potential ΨC is
applied to the collector, then ΨP and α are found from (27)
and (28) and then Jt is found from (30). If the emission is
space charge limited also the equation (29) must be added
into the system of equations and the critical emission co-
efficient ε is found as a solution of the system of equations
together with ΨC , ΨP and α.

3. Results
In this section we show some results of our model. We

first illustrate some general properties of our model. The
following parameters are selected: μ = 1/1836, Θ = 100,
σ = 0.01, τ = 0.1, u2 = 0.1, u3 = 0.004 and η = 0. The
hot to cool electron density ratio β is gradually increased
and the system of equations (27), (28), (29) and (30) is
solved for ΨP , ΨC , α and ε. In this way one gets the de-
pendence of ΨP , ΨC , α and ε on β. The plot is shown in
figure 2. For very small values of β the system of equa-
tions (27), (28), (29) and (30) only has 1 solution. We call
it the low solution because the absolute value of the cor-

Fig. 2 Solutions ΨP , ΨC , α and ε of the system of equa-
tions (27), (28), (29) and (30) versus β for μ = 1/1836,
Θ = 100, σ = 0.01, τ = 0.1, u2 = 0.1, u3 = 0.004 and
η = 0.

responding ΨP is the smallest. When β reaches the value
around 0.094 suddenly 2 branches of a new solution ap-
pear. We call it the middle solution because the absolute
value of the corresponding ΨP is the intermediate. One
branch of the middle solution merges with the low solution
when the value of β exceeds 0.331 and the other branch of
the middle solution merges with the high solution when β

exceeds 0.165. The high solution is the third solution of
the system (27), (28), (29) and (30) with the largest abso-
lute value of the corresponding ΨP . This solution appears
when β exceeds 0.134. This solution also has 2 branches.
One of them joins with the middle solution when β ex-
ceeds 0.165 and the other branch extends to the values of
β that are even larger than 0.331 where the low and the
middle solution join. In addition the low solution splits
into 3 branches when β is between 0.162 and 0.227. So for
β between 0.162 and 0.165 the system of equations (27),
(28), (29) and (30) has 7(!) solutions all together.

In figures 3 and 4 the dependence of ΨP , ΨC , α and ε

on drift velocities u3 and u2 is plotted. For the figure 3 the
following parameters are selected: μ = 1/1836, Θ = 100,
σ = 0.01, τ = 0.1, u2 = 0.1, β = 0.163 and η = 0. The drift
velocity of the emitted electrons u3 is varied between 10−4

and 10−2. The low, the middle and the high solution can be
found in the entire interval of u3 shown in figure 3. For the
values of u3 between 0.0019 and 0.0066 the low solution is
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Fig. 3 Solutions ΨP , ΨC , α and ε of the system of equa-
tions (27), (28), (29) and (30) versus u3 for μ = 1/1836,
Θ = 100, σ = 0.01, τ = 0.1, u2 = 0.1, β = 0.163 and η = 0.

divided into 3 branches. The high solution has 2 parts. The
first branch exist for the values of u3 below 0.0045. The
second branch of the high solution starts when u3 exceeds
0.0040 and extends towards the values of u3 above 0.0045.
Also the middle solution has 2 branches. One of them has
almost constant values of ΨP , ΨC , α and ε in the entire
interval of u3 shown in the figure. The second branch of
the middle solution can be found for the values of u3 be-
tween 0.0040 and 0.0045. In this interval of u3 the system
of equations (27), (28), (29) and (30) has 7 solutions.

The dependence of the solutions ΨP , ΨC , α and ε of
the system of equations (27), (28), (29) and (30) on u2 is
shown in figure 4. The other parameters are: μ = 1/1836,
Θ = 100, σ = 0.01, τ = 0.1, u3 = 0.004, β = 0.163 and η = 0.
The drift velocity of the hot electrons u2 is varied between
0.01 and 3.5. The low, the middle and the high solution can
be found for all the values of u2 shown in figure 4. For the
values of u2 below 3.27 three branches of the low solution
can be found. The additional branches of the middle and
of the high solution can be found only for u2 below 0.23.
For these values of u2 the system of equations (27), (28),
(29) and (30) has 7 solutions.

4. Discussion and conclusions
It is known that a necessary condition for the forma-

tion of a stable sheath in front of a negative electrode is that

Fig. 4 Solutions ΨP , ΨC , α and ε of the system of equa-
tions (27), (28), (29) and (30) versus u2 for μ = 1/1836,
Θ = 100, σ = 0.01, τ = 0.1, u3 = 0.004, β = 0.163 and
η = 0.

the ions reach the ion sound velocity at the sheath edge.
For an extensive discussion of this subject see [12]. In
order to fulfill this requirement the ions must be acceler-
ated in the potential drop of the so called pre-sheath. In
a bounded plasma system the pre-sheath potential drop is
replaced by the potential drop between the plasma source
(where the potential is zero) and the potential ΨP at the in-
flection point. In a bounded plasma system the Bohm con-
dition is determined by 2 parameters: ΨP and α. If there
are 2 species of negative particles with different tempera-
tures present in the plasma, triple solutions for the Bohm
condition can often be found. The potential drop that ac-
celerates the ions to fulfill the Bohm condition can be de-
termined by either of the negative particle species. There-
fore 2 values for the Bohm condition may be expected and
are physically reasonable. The third solution is usually an
intermediate one and is just a mathematical result. The
discussion which solution is correct for a given set of pa-
rameters is still not finished - see the discussions in [13] -
[16]. In our recent paper [9] we have analyzed very similar
bounded plasma system as in this work, only without drifts.
Triple solutions of the model were found, as well as the
splitting of the low solution into 3 parts. This splitting is in
qualitative agreement with experimentally observed triple
floating potentials of electron emitting electrodes [10, 11].
We have suggested that the correct solution is the one that
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results in a regular numerical solution of the Poisson equa-
tion of the system.

In this work the drifts have been introduced into the
distribution functions of the hot and of the emitted elec-
trons. Even when the drift velocities are relatively small
when compared to the thermal velocities of the respective
group of electrons, they have quite a strong effect on the
potential and other plasma parameters. Furthermore 2 ad-
ditional solutions of the model may appear, because the
middle and the high solution can split in 2 branches. For
some values of the plasma parameters up to 7 simultane-
ous solutions of the model are possible. Which solutions
are physically possible and which Bohm condition is the
correct one for a given set of plasma parameters remains
the subject of future investigations. Another generalization
of a one-dimensional kinetic model of a bounded plasma
system presented in this work is the inclusion of a finite
(non-zero) electric field at the source electrode. Also the
analysis of the effects of this electric field remains the sub-
ject of future investigations.
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Appendix
The zero electric field conditions (28) and (29) in sec-

tion 2 are written only in the symbolic form, with the in-
tegration over Ψ not actually carried out. For the conve-
nience of the reader we give the list of the respective inte-

grals in this Appendix:
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