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The Hopfield neural network has been studied for improving the sparse-data tomography of plasma. By using a 

differentiation operator and an appropriate nonlinear activation function in the neural model, the network gives a 

useful result of well reconstructing smooth and positive-valued image profiles. Data structure formats in computer 

coding for sparse matrices are useful for accelerating the neuron state updating. Study is also made for optimizing 

the regularization parameter that is involved in interconnecting weights. Concerning a bolometer camera system of 

LHD, the results of data analysis and numerical simulation are presented in comparison with those of the 

Tikhonov-Phillips method and the maximum entropy method using a fast Newton algorithm. 
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1. Introduction 

The Hopfield neural network [1,2] can be a tool of 

regularizing the ill-conditioned least-squares solutions of 

linear equations in formulation of Tikhonov-Phillips (TP) 

type, if necessary, with an additional nonlinear constraint 

of positive value of the solutions, and can be applied to the 

tomographic image reconstruction of plasma. In this paper, 

neural model design is studied for the purpose of fast and 

stably obtaining smooth and positive-valued images and 

examined on the bolometer camera data of the Large 

Helical Device (LHD) [3-6]. The result is compared with 

those of the TP method [7] and the maximum entropy 

method (MEM) with a fast Newton algorithm whose 

usefulness was proved for the solar flare imaging using the 

satellite Yohkoh hard x-ray telescope (HXT) [8,9]. 

In the next section, the design of the Hopfield neural 

network on the interconnecting weights, the biases and the 

activation function of neurons is described. Results of 

LHD bolometer data analysis and numerical simulations 

are presented in Sec. 3 and summarized in Sec. 4. 

 

2. Hopfield Neural Network Design for Image 

Reconstruction 

2.1 Dynamics of Hopfield neural network 

The neural net of Hopfield type [1] is a system which 

consists of mutually interconnected neurons as shown in 

Fig. 1. The Hopfield type means that this system of K 

neurons has a dynamical behavior expressed by a set of 

differential equations 

 

ai
dui

dt
= wij f j

j=1

K

+ i (i = 1, 2, , K ) ,    (1) 

where ui and fi are the internal state and the output of the 

i-th neuron, respectively, which are related with an 

activation function fi= (ui), that is, the input-output relation 

in each neuron. And wij is a constant representing the 

interconnecting weight from the j-th to i-th neuron, and i 

is the bias of the i-th neuron which is also given a constant; 

ai’s (>0) are relaxation constants. Through the function 

fi= (ui), Eq. (1) is essentially an equation system for the 

internal states ui (i=1, 2, …, K).  

With this definition, the neural system is shown to 

have a quantity 

E =
1

2
wij fi f j

j=1

K

i=1

K

i fi
i=1

K

,  (2) 

to be termed an energy function since it always tends to 

decrease. In fact, from Eqs. (1) and (2) one gets a relation 

dE

dt
= a

i

d (u
i
)

du
ii=1

K
du

i

dt

2

, 

provided that the weights are symmetric such as wij=wji for 

all i and j. Consequently, if (ui) is a monotonically 

increasing function, one always has dE dt 0 . 

By adopting matrix notations, Eqs. (1) and (2) are 

written briefly as 

dv

dt
=Wf + , E =

1

2
f TWf T f , (3) 
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Fig.1  Hopfield model with K neurons  

 

where v, f and  are K-dimensional column vectors with 

components of aiui, fi and i, respectively, and W is a K-dim. 

square matrix with elements wij. 

 

2.2 Hopfield model for linear inverse problems 

With the above neural model, one can solve the 

optimization problems of TP type with a nonlinear 

modification. Let us consider the inverse problem 

expressed by an ill-conditioned linear equation Hf=g with a 

K-dim. column vector f and an M-dim. one g. In the case of 

tomography, f is an image vector composed of the K 

unknown pixel values that should be determined from a 

data vector g composed of M detector outputs, and H is a 

projection matrix related to the geometry of the lines of 

sight. 

A standard approach to the well-regularized solution 

is to minimize a penalty function P(f) under the constraint 

that the mean square error (1/M)||Hf g||2 should be equal to 

a constant. Then, the problem is reduced to minimizing the 

Lagrange function 

( f ) = P( f ) + (1 /M ) Hf g
2
  (4) 

with a regularization parameter  (>0). With P(f)=||Cf||2 

where C is either the identity matrix or a differentiation 

operator, one gets the TP solution 

f̂ = (HT
H + M C

T
C)

1
H

T g ,  (5) 

which can further be rewritten to a useful form of 

orthogonal series expansion by adopting the singular value 

decomposition of HC 1 [7]. This solution f̂  is linear with 

g and fast in computing for the variation of g, but the 

components f̂i  may take negative values. 

 Now, one finds a significant analogy between this 

Lagrange function (f) and the energy function E of 

Hopfield model. Rewriting (f) with P(f)=||Cf||2 as 

( f ) = f T (1 /M )(HT
H + M C

T
C) f

(2 /M )gT Hf + (1 /M )gT g
   

and neglecting the constant term (1 /M )g
T
g , we see that 

the above (f) is reduced to E by putting 

W =
2

M
(H

T
H + M C

T
C), =

2

M
H

T
g .  (6) 

This relationship suggests that the Hopfield model 

provided with this symmetric weight matrix W and this 

bias vector  will give the minimizer f of  as a result of 

learning, that is, in the stationary state that will be attained 

after iterations according to Eq. (1). It is to be noted that 

this minimizer is not equal to the solution of TP, but it 

gives the solution u of the stationary state equation 

 
Wf + = 0        with  fi = (ui ) (i = 1, 2, , K ) . (7) 

Apparently, when the sigmoid function is used for (ui), Eq. 

(7) is nonlinear in such a way that all the components fi’s 

of the solution f are hold positive-valued. When the ramp 

function (u
i
)=u

i
 ( < u

i
< )  is used,  the solution 

coincides with the solution of TP. Therefore, one can state 

that the minimization of (f) using the Hopfield neural 

network will be a method of nonlinear regularization with 

positive-value guarantee, which is a method different from 

MEM employing the neg-entropy for P(f) in Eq. (4).. 

 

2.3 Numerical procedure for solution 

Eq. (5) means that the TP solution is naturally 

obtained by inverting a preliminary solution HTg with the 

operator HTH+M CTC. Eq. (6) requires that this 

preliminary solution and operator of TP are given to the 

Hopfield model as the bias  and the weight W, 

respectively. Updating the neuron states by Eq. (1) means 

that the TP inversion is replaced by the repetition of the 

forward calculation Wf+  for updating the vector u.  

In this paper, we start with an initial system state of 

ui
(0)

=
1
( fi

(0)
)  and execute the (n+1)th iteration based on 

the Euler approximation of Eq. (1), that is, 

ui
(n+1)

= ui
(n)

+ ui , ui = wij f j
(n)

+ i

j=1

K t

ai
 (8) 

for 
 
i = 1, 2, , K . It is meaningful to note that this 

iteration for minimizing the function E is a modification of 

the steepest descent iteration which is to be carried out 

with 

ui = wij f j
(n)

+ i

j=1

K d i

dui

(n)

t

ai
. 

Comparing with Eq. (8) and recalling Eq. (7), one can state 

that, when the ramp function is used for (ui), the Hopfield 

iteration is reduced to the steepest descent iteration and 

will yield the linear solution of TP. 

To get a smooth profile of plasma, we employ the 

Laplacian operator for C. To avoid the saturation of image 

values fi, we replace the sigmoid function by the skimmer 

function [10] 

(u
i
) = u

i
+ ln[1+ exp( u

i
)] ( < u

i
< ) , (9) 

which is a monotonically increasing function with  a 

derivative of sigmoid function form d (ui)/dui 

= [1+ exp( ui)]
1, being similar to the ramp function 

 
(u

i
) u

i
 for 

 
u
i

1 and converging to zero as 
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u
i

. Also, we carry out the asynchronous updating 

of neuron states by Eq. (8), changing the order of K 

neurons every iteration using the random number. In this 

calculation, regarding that the matrices H and W for 

tomography are sparse, we omit the zero elements of these 

matrices beforehand in computer coding using the 

compressed column/row storage (CCS/CRS) formats [11]. 

Excluding the multiplication of zero value will accelerate 

the iterative calculation. 

 

3. Application to Bolometer Data of LHD 

3.1 Observed behavior of neural network 

The Hopfield method described above was applied to 

the signals of a bolometer camera system of LHD. As 

displayed in Fig. 2, the system consists of two 20-channel 

pinhole cameras with AXUVD silicon photodiode arrays 

and has been installed in a semi-tangential plane viewed 

with 3.5U/4-O ports of LHD [3-6]. For the number of 

detectors of M=40 and the pixellation of the imaging 

region with K=32x32, the matrix H was evaluated by 

taking into account the beam-width due to the finite 

detector surface and the finite receiving solid angle, which 

were considered also for the calibration of signals g. 

The weight matrix W and the bias vector  are as 

plotted in Fig. 3. The weights to a neuron allocated at the 

i-th pixel are composed of three portions: 1) the negative 

self-feedback wii , 2) the positive feedbacks wij from four 

neighboring neurons, and 3) the negative feedbacks wij 

from all the neurons including itself that exist along the 

line of sight passing the i-th pixel. The first two portions 

arise only from the term M CTC and will contribute to the 

stability of the pixel value fi and the smoothness of profile 

 

 

 

 

 

 

 

 

Fig. 2  View fields of two fan-beam bolometer cameras and the 

square imaging region in a cross section of LHD. 

 

 

 

 

 

 

 

Fig. 3  (a) Weights to a neuron which is located at a pixel passed 

by two lines of sights: 32 32 image-like plot of w500,j as 

a function of j (=1, 2, …, K) for = 1.0 10
5

; (b) 

32 32 image-like plot of the biases i=(2/M)(HTg)i of K 

neurons (LHD shot no 31721, t=2.00 s). 

around the i-th pixel. The third portion arises only from the 

term HTH and agrees with the requirement of fitting the 

projection (Hf)m to the detector output gm. Neurons that 

exist outside the view fields of camera are provided only 

with the first two portions and isolated having liaisons with 

only four neighbors. Meanwhile, the bias  proportional to 

HTg presents a preliminary image like two overlapped 

fan-beams which is produced by a back-projection 

procedure, that is, by redistributing each detector output gm 

to the pixels along the m-th line of sight with the weights 

hmi. A neuron given a larger positive bias tends to excite. 

Then, the obtained Hopfield model behaved as shown in 

Fig. 4. It is seen that, with an initial image nearly equal to 

zero and with a value of , the energy function E decreases 

monotonically and the plasma image is built up gradually 

as the iteration goes until E reaches an almost stationary 

state, where the projection Hf̂ of the reconstructed 

image f̂  well fits the data g. The image f̂ is in 

accordance with the magnetic surface and demonstrates a 

gas-puff enhancement of radiation in the bottom of the 

imaging region. The nonzero outputs of the 21st and 40th 

detectors indicate the existence of plasma outside of the 

view field of the horizontal camera, especially, at the 

bottom region. And an artifact appears near the horizontal 

camera in a region passed by no line of sight. 

This result was obtained by setting all ai’s to a=10 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4  Result of Hopfield method: (a) Time changes of energy 

function E and plasma image f; (b) Reconstructed image 

f̂  for n=1500 (left) and its projection (Hf̂ )
m

 and data 

gm (right); = 1.0 10
5

 (LHD shot no 31721, t=2.00 

s) . Detector number m from 1 to 40 counts up the lines of 

sight in Fig. 2 from the left in vertical camera and then 

from the bottom in horizontal camera. 
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Fig. 5  (a) Change of the reconstructed image f̂ with  , and (b) 

L-curve showing the dependence of ||Cf̂ ||2 on ˆ
2

 in 

Hopfield analysis (LHD shot no 31721, t=2.00 s).  

 

with t=1 and by choosing the scaling factor  of data g as 

= 1.0 10
5

. The factor  was adopted to appropriate the 

order of magnitude of gm not only for a practical purpose of 

adequate neuron inputs but also for the purpose of 

accelerating the system updating; a larger value of  lead 

to a better use of the ramp-like part of the skimmer 

function and thus easily to faster updating as long as the 

Euler approximation in Eq. (8) was good enough. 

Contrarily, the sigmoid function required carefully 

arranging the values of  and a both for avoiding the 

saturation of fi and for fast convergence. The ramp function 

lead to the fastest convergence to the image reconstruction 

very similar to that of TP. For any choices of activation 

function and parameter values, the CCS/CRS formats were  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 Result of TP method: changes of GCV, ˆ
2

 and f̂  with   

(LHD shot no 31721, t=2.00 s). 

powerful for efficient computing. Particularly, the use of 

the CRS format for calculating Wf(n) in the right side of Eq. 

(8) resulted in computing time decrease by a factor of 

about 1/6 for once updating the whole K-neuron system. 

This factor was nearly equal to the number ratio of nonzero 

elements in the matrix W. 

Now, the image f̂  changes as shown in Fig. 5(a). 

The  value in Fig. 4 was chosen practically in regarding 

the dependence of the attained mean square error 

ˆ2 = (1 /M ) || Hf̂ g ||2 on  and also the L-curve [12], 

which is a parametrized curve of ||Cf̂ ||2  versus ˆ2 with 

the change of  as plotted in Fig. 5(a). It is in the TP 

method that the L-curve criterion has been theoretically 

validated, but it is possible to calculate in the Hopfield 

method regardless to nonlinear modification. The obtained 

L-curve shows that, when  is decreased, Hf̂  approaches 

to g with a monotonic decrease of ˆ2  while the image f̂  

improves at first with a gradual increase of ||Cf||2 and then 

suffers from its rapid increase reflecting the noise 

enhancement due to the ill-condition of the equation Hf=g. 

On the bolometer system of LHD, simulations on 

numerically generated data g=Hf0+n with known images f0 

and zero-mean Gaussian noises n have suggested that the 

optimal images are obtained at the right side of the corner 

of L-curve, that is, for the  value a little larger than the 

value for which the rapid decrease of ˆ2  ends; also, the 

optimal value of  is smaller than the value which is 

selected with the Morozov condition using the known 

mean square value of noises.  

 

3.2 Comparison with TP method and MEM and results 

for a variation of data 

On the same bolometer data, results of analysis by the 

TP method and MEM are exhibited in Figs. 6 and 7. With 

the condition number 1/ 40=607.4 of HC 1 (i.e., the ratio 

of the maximum and minimum singular value), the TP 

method gave smooth profiles of emissivity which varied 

with  as shown in the insets of Fig. 6. The generalized 

cross validation (GCV) [13] took a minimum for =1x10 4, 

where the linear low-pass filtering based on the singular- 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7 Result of MEM: Changes of GCV1, GCV2, ˆ
2

 and f̂  

with   (LHD shot no 31721, t=2.00 s). 
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vector series expansion might be optimal. The image f̂  

so-selected took negative values in a region having no line 

of sight near the vertical camera. On the other hand, as 

shown in the insets of Fig. 7, the MEM gave rough profiles 

due to the weak regularization with no negative pixel 

value. 

This result of MEM was obtained by the fast 

algorithm using the matrix formula of 

Sherman-Morrison-Woodbury (SMW) [8,9,5]. When one 

minimizes the function (f) in Eq. (4) with the neg-entropy 

P( f ) = fi ln fii=1

K
, the Newton method for solving the 

K-dim. nonlinear equation ( f ) f = 0  requires the 

inverse of a K-dim. Jacobian matrix for every iteration. 

The SMW formula makes it possible to obtain this inverse 

by an M-dim. matrix inversion, which leads to great 

computational facility whenever the number of data is 

much smaller than the number of unknowns, i.e.  M K . 

Additionally, for the optimization of  in MEM, one may 

take interest in an approximated GCV of the form either 

GCV1( )= ˆ2 /[1  (1/M)TrA]2 or GCV2( )=(1/M)||(A I)g||2 

/[1 (1/M)TrA]2 with an approximated influence matrix A 

and the identity matrix I. In this application, GCV2( ) was 

preferable as had been in the HXT image reconstruction [8, 

9]. Simulations showed that the  values selected for the 

minimum of GCV in both the TP method and MEM were 

nearly optimal for recovering the original images and 

smaller than those selected by the Morozov condition. In 

MEM, a problem of reliability remained in the recovery of 

the value of GCV2( ), as implied by the shot no. result in 

Fig. 7, as  approached zero in excess of the optimal value. 

Finally, for a variation of data, the performance of the 

Hopfield neural network was good and gave sufficiently 

stable reconstruction. Two examples, where the detector 

outputs were very different, are exhibited in Fig. 8. Here, it 

is seen that the outputs of the 21st detector are nearly zero 

and that the artifact near the horizontal camera still appears 

with good fitting to data as far as the data of this shot are in 

this region or by giving them large negative biases in the 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8  Image reconstruction results of the Hopfield method in a 

diminishing phase of plasma: (a) t=3.45 s and (b) t=3.61 s 

in LHD shot no 31721. 

concerned. Artifact elimination either by omitting neurons 

Hopfield iteration lead rather to the separation of Hf̂  

from g. Also, no appreciable effect of artifact elimination 

could be obtained by the modification of minimum Fisher 

information type with P(f)=||D1/2Cf||2 [6]. The modification 

was done in the present Hopfield neural network by 

practically adopting the f(n)-dependent weight matrix of 

W= (2/M)(HTH+ M CTD(n)C) with the diagonal matrix D(n) 

=diag[(f1
(n)) 1, (f2

(n)) 1 , …, (fK
(n)) 1]. 

 

4. Conclusion 

The Hopfield neural network works well for the 

bolometer tomography of LHD plasma. Based on the TP 

regularization with the Laplacian operator, the Hopfield 

model with a nonlinear activation function leads to a 

success of obtaining the image reconstruction of plasma 

both with TP-like smooth profiles and with the MEM-like 

positive value guarantee. Using the activation function of 

skimmer type leads to avoiding the saturation of plasma 

image and facilitates the parameter appropriation for the 

rapid convergence of iteration. Coding with CCS/CRS 

formats for sparse matrices contributes to the decrease of 

computing time effectively. For selecting the regularization 

parameter of TP type, the L-curve has proved useful. This 

improvement of plasma imaging requires a loss of 

computing time: the Hopfield iteration took about 90 s for 

1,500 iterations while the fast algorithm of MEM took only 

about 2 s for 8 iterations, with an Ultra-Sparc-IIe 500 MHz 

computer. 
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