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The energy spectrum of y-ray emitted from °Li+D nuclear reaction induced by admixing a small amount of °Li
in deuterium plasma and its application to fast-ion diagnostics are studied. It is shown that the monochromatic y-ray
with energies E;,) (0.429 and/or 0.478 MeV) can be used for diagnostics of fast-ion velocity distribution function
in non-reactive and thinly-peopled deuterium plasmas. A possible experiment to verify knock-on tail simulations
and fast-ion diagnostics based on the y-ray spectrometry using °Li+D y-ray-generating nuclear reaction in

currently-existing deuterium plasmas is proposed.
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1. Introduction

The clarification of energetic-ion behavior in burning
plasmas is one of the most important issues for controlled
fusion research and so far many deuterium-plasma
experiments have been performed. In these experiments,
appearance of energetic component in fuel-ion velocity
distribution functions by nuclear elastic scattering (NES)
[1-5] and/or external heatings, e.g. ion cyclotron range of
frequencies (ICRF) heating [6,7] has been ascertained.

So far various ideas for energetic ion diagnostics have
been developed, e.g. pellet charge exchange [8], charge
exchange recombination spectroscopy [9] and y-ray
spectroscopy. For its simple diagnostic system and
utilization of standard technology, the quantitative
spectrometry of high energy y-rays emitted from nuclear
reactions induced by fuel and impurity ions has been
considered to be applicable for plasma diagnostics and
investigations to use the y-ray- generating nuclear reaction
as a diagnostic tool have been made for a number of
decades [10-13]. We have previously developed the
Boltzmann-Fokker-Planck (BFP) model [14-18] for the
purpose to analyze energetic-ion behavior in fusion devices
and proposed a possible experiment [19] using
y-ray-generating °Li+D reaction [20-22] to verify the BFP
simulations. We have shown that the knock-on tail
formation can be experimentally examined by looking at
the y-ray rate by °Li+D
currently-existing fusion-experiment devices; however, no
detailed discussion about y-ray energy spectrum has been
made.

In this paper, the use of 0.478 (0.429) MeV
y-ray-emitting  °Li(d,p)’'Li" (°Li(d,n)’Be’), 'Li'—'Li+y
(7Be*—>7Be+y) reaction [20-22] in low-temperature and

emission reaction in
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low-density plasmas which are often seen in the
currently-existing devices is considered. In the future
fusion reactors with DT burning many different types of
y-ray can occur concurrently, and to measure the specific
y-ray against the background noise, the nuclear reaction
emitting y-ray with several-MeV energy would be
required. Although the energies of y-ray emitted from
excited 'Li" and "Be” from °Li+D reaction do not satisfy
the above requirement ( Ef= 0.478 and 0.429 MeV), the
cross sections of °Li+D reactions have quite unique
properties, i.e. rapidly increases in more than several
hundreds-keV energy range in the centre-of-mass frame
(see Fig.1). By using the °Li+D reaction we can examine
the fast-deuteron distribution function from the y-rays
caused by the “energetic” deuterons. By looking at both
the y-ray generation rate and y-ray energy spectrum at the
same time, more precise measurement of energetic-ion
velocity distribution function can be expected. Furthermore
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Fig.1 6Li(d,p)7Li* and ®Li(dn)’Be’ cross sections as a
function of center-of-mass energy[18-20].
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from the experiment using the °Li+D reaction in
currently- existing deuterium plasmas, we may obtain the
information on the fast-ion behavior and diagnostic
method for future fusion reactors.

We consider a few percent of °Li containing
deuterium plasma. By calculating the correlation between
the shape of suprathermal deuteron velocity distribution
function and the y-ray emission spectrum for various
plasma parameters, a possibility of energetic-ion
diagnostics using °Li+D y-ray-generating reaction in
currently-existing deuterium plasmas is studied. A possible
experiment to verify knock-on simulations and y-ray
diagnostics using the °Li+D y-ray-generating reaction is
proposed.

2. Analysis Model
The emission energy spectrum of species a (a ='Li or
"Be") is written as

‘?g (E) = J‘J‘_[fD (;D)fsu (;(’Li)

xj—gb‘(E—Eu)urd:)Dd;mdQ , (1)

where fD(;D) and  f,, (Eﬁu) are the velocity

distribution functions of D and 6Li, do/dS) is the
differential cross section of °Li-d reaction and in this
paper which is assumed to be isotropic in the
centre-of-mass frame. E, represents the ion energy in the
laboratory system [23];
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where the subscript b indicates reaction product (b =proton
or neutron ), V, is the center-of-mass velocity of the
colliding particles, 6. is the angle between the
center-of-mass velocity and the 'Li" ( "Be” ) ion velocity in
the center-of-mass frame, Q is the reaction QO-value, and E,
represents the relative energy given by
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In consideration of Doppler effect of y-ray emitted from
the 'Li" ( 'Be’ ), the energy spectrum of the y-ray are
calculated using the obtained 'Li" ( 'Be” ) energy
spectrum ;

dE
—L=N»IEE
dE EZ ( r )
1(£,;E,)
ldNa AEu Q 0 )
- — \E, -E)|<AE,, ) , 4
=12 dE AE,, V7 7| A @
0 , (otherwise)

v
_Ya 0
AE g —7Ey

where E is transition energy of y-ray radiation

(Ef —0.478 or 0.429 MeV), and ¢ is velocity of light.

From the velocity distribution function obtained, we can
also evaluate the ’Li+d reaction rate coefficient;
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where U, is relative velocity between D and SLi. Because
the excited nuclei rapidly transit to ground state emitting
y-ray in several femto-seconds order, thus the reaction rate
coefficient can be obtained directly from the vy-ray
emission rate. If the distribution function is given, the
0.478 and 0.429 MeV vy-rays emission rates and energy
spectrums are evaluated. The °Li(d,p)’Li* and SLi(d,n)'Be"
cross sections are taken from Refs. 20-22. Throughout the
calculations, ®Li is assumed to be Maxwellian at the same
temperature with bulk ion. Because the mass of °Li is
larger than deuteron, distortion of velocity distribution
function, e.g. due to NES, would be negligible.

To calculate the correlation between the shape of
non-Maxwellian distribution function and the y-ray
emission spectrum, we roughly simulate the fuel-ion
distribution function using the following two-temperature
Maxwellian model;

ftotal = fbulk + ftail

2
S butk (tait) = A ik (10i1)PD
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In above expression, total distribution function f,,; is
expressed as a summation of the bulk f,,; and tail f;
distribution functions.

In Fig.2 we show the distribution functions (Eq.(6))
when tail temperature T,; (=10, 60, 300, 500 and 1000
keV) and bulk temperature 7}, = SkeV, total deuteron
density np = 10" m>, tail-ion density 7,5 = 10" m™, and
bulk ion density np, = np— n,; are assumed. The bulk T,
and tail T;,; temperatures and tail density #,,; are chosen
referring to the distribution function experimentally
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observed in Large Helical Device (LHD) [6,7].

3. Results and Discussion

The emission spectrums of 'Li° and 'Be’ are
calculated wusing the deuteron velocity distribution
functions of Eq.(6) and presented in Fig.3 and Fig.4 for
several tail temperatures. We can observe the broadening
of 'Li" ( "Be" ) energy spectrum due to the energetic tail
f..; formation in deuteron distribution function (see
Fig.2) and the increment in the emission rate of 'Li"
( 7Be*) with increasing tail temperature Ty,
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Fig.2  Deuteron distribution function simulated by

two-temperature Maxwellian model.

The emission spectrums of 0.478- and 0.429-MeV
y-rays are presented in Fig.5. In order to compare the
shapes of y-ray energy spectrums for different emission
rates (7y;), normalized 0.478-MeV y-ray emission
spectrums are also presented in Fig.6. They are
normalized at the peak value of each spectrum. It is found
that the width of the y-ray emission spectrum is
broadened due to the energetic tail formation. Because of
the small cross section in thermal energy range, the y-ray
emission spectrum is not affected by the shape of the bulk
component in deuteron distribution function, i.e. n,,, and
Tpur. Furthermore density of the tail component n,,;
influences only the magnitude of y-ray emission rate(the
shape of y-ray energy spectrum is not affected by n,,).
By looking at the normalized 0.478-MeV y-ray emission
spectrum from D+°Li reaction, we can directly estimate
the energetic-deuteron distribution function, i.e. 7,; when
two-temperature Maxwellian model is assumed.

In Fig.7, correlation between 0.478-MeV y-ray
emission rate from °Li(d,p)’Li" reaction and n,,; is shown
for various tail temperatures 7,,;. If we have previously
known the tail temperature by looking at the emission
spectrum, we can also determine the magnitude (density)
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of the tail component, i.e. n,; by measuring the y-ray
emission rate.

A possibility of diagnostics of fast-ion distribution
function using °Li+D y-ray-generating reactions has been
shown. The spectrometry of y-ray emitted by °Li+D
reaction can not be used for DT-burning-plasma
diagnostics because of the background noise; however
similar diagnostic approaches using other y-ray
generating reactions, e.g. *Be(a,n)'’C", ’C"—'"*C+y, may
have a prospect for fast-ion diagnostics using the
presented method. Further investigation using other
y-ray-generating reaction would also be necessary. A
measurement method of y-ray is Dbasically a
line-integrated measurement. The y-ray emission
spectrum is not affected by the energy distribution of bulk
ions. The energetic ions are locally produced by external
heating. If the spatial distribution of the y-ray emission
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Fig.3 "Li" energy spectrum (calculated using the deuteron
distribution function of Eq.(6)).
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Fig.4 'Be" energy spectrum (calculated using the deuteron
distribution function of Eq.(6)).
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Fig.5 °Li(dp)'Li" and °Li(dn)'Be’ y-ray energy
spectrums for various tail temperatures 7.
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Fig.6 Normalized 0.478 MeV y-ray energy
spectrums for °Li(d,p)’Li" reactions.
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sources could be assessed using the techniques like
tomography [11], the locally-averaged emission spectrum
could be measured by selecting appropriate line of sight.
In this paper, we have expressed the deuteron velocity
distribution  function using the two-temperature
Maxwellian model. The analysis using more realistic
distribution would be required.
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