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Recent experimental studies demonstrate a qualitative control over the ELMs by imposing resonant

magnetic perturbations at the plasma edge [T.E. Evans, R.A. Moyer, P.R. Thomas et al., Phys. Rev.

Lett. 92, 235003 (2004), Y. Liang, H.R. Koslowski, P.R. Thomas et al., Phys. Rev. Lett. 98, 265004

(2007), K. H. Finken, B. Unterberg, Y. Xu et al, Nucl. Fusion 47, 522 (2007)]. However, in order to

get any quantitative result, work has to be done in the understanding of ELM dynamics. We present

results from numerical simulations of Resistive Ballooning Mode (RBM) reproducing the stabilization

of barrier relaxations by a static magnetic perturbation. It is found that this stabilizing effect is linked

to the modification of the pressure gradient profile which is due mainly to the presence of a residual

magnetic island chain at the position of main resonance.
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1. Introduction
In divertor tokamak plasmas, an Edge Transport

Barrier (ETB) forms during the transition from

low to high confinement (L-H transition) when the

heating power reaches a critical value Pc. Such a

barrier is characterized by a strong pressure gradient

at the plasma edge. The H regime is promising for

the next generation of tokamak experiments such as

ITER. However, an instability known as Edge Lo-

calized Mode (ELM) develops a short time after the

threshold Pc is reached. ELMs are characterized by

intermittent bursts in the heat flux, therefore causing

the transport barrier to relax quasi-periodically. Over

the last decade, the possibility of controlling ELMs

has become plausible, as recent experiments were

carried out on DIII-D, on JET and on TEXTOR

[1, 2, 3]. These experimental studies obtained a qual-

itative control over the ELMs by imposing Resonant

Magnetic Perturbations (RMPs) at the plasma edge.

However, in order to get any quantitative result,

work has to be done in the understanding of ELM

dynamics. Recently, elmy-like relaxation oscillations

of transport barrier have been obtained using a 3D

global electrostatic code of tokamak edge turbulence

[4]. We investigate numerically the effects of static

RMPs on transport barrier relaxation oscillations.

We use the geometry of the TEXTOR tokamak, and

plasma parameters close to those used in typical

experiments on this machine. In the following, the

RBM turbulence model is presented, our numerical

results follow, we discuss these results and conclude.
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2. Resistive Ballooning model
The model used in this study is electrostatic Re-

sistive Ballooning Mode turbulence involving the pres-

sure p and electrostatic potential φ. The equations

describing this model are the following [4]:

∂∇2
⊥φ

∂t
+ {φ,∇2

⊥φ} = −Ĝp −∇2
�φ

+ ν∇4
⊥φ (1)

∂p

∂t
+ {φ, p} = δcĜφ+ χ�∇2

�p

+ χ⊥∇2
⊥p+ S (2)

The first equation corresponds to the vorticity

equation, where ∇2
⊥φ is the vorticity of the per-

pendicular (to the magnetic field) component of the

E × B flow, and the parallel current and viscosity

effects (ν) are taken into account. The second equa-

tion corresponds to energy conservation, where χ�

and χ⊥ are collisional heat diffusivities parallel and

perpendicular to the magnetic field, and S = S(x)

is an energy source modeling a constant heat flux

density from the plasma core. Following the standard

convention, x represents the local radial coordinate,

y is the local poloidal coordinate and z is the local

toroidal coordinate, in a magnetic fusion device.

The curvature operator Ĝ arises from the toroidal

geometry of the tokamak, and δc =
5
3 · 2Lp

R0
� 1 is

basically the ratio of the pressure gradient length

Lp to the tokamak major radius R0. In the present

model, time is normalized to the interchange time

τinter = c−1
s

�
R0 Lp

2 , which also defines the perpen-

dicular length scale through the ballooning length

ξbal =
�
ni0mi η�
τinter

Ls

B0
, where cs is the plasma sound

speed, B0 is the magnetic field strength, ni0 is a
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reference ion density, mi is the mass of ions, η� is the

parallel resistivity of the plasma and Ls is a reference

magnetic shear length.

Note that the parallel gradient is ∇� =

∇�0 + {ψRMP , ·}, where ∇�0 is the compo-

nent due to the unperturbed magnetic field,

{ψRMP , ·} = ∂ψRMP

∂x
∂
∂y

− ∂ψRMP

∂y
∂
∂x

denotes the

Poisson brackets and the magnetic flux due to

the resonant magnetic perturbation is written as:

ψRMP (x, y, z) ∼ ID
�

ψm(x) cos
�
m
r0

y − n0
Ls

z
�
where

ψm(x) = sin[(m−m0)Δθc]
[(m−m0)Δθc]

�
r0
rc

�m
exp

�
m
r0

x
�
is the

spectrum of the RMPs in slab geometry, m0 is the

central poloidal harmonic number, rc, Δθc denote

respectively the radial position and poloidal exten-

sion of the RMP-producing coils, n0 is the toroidal

harmonic number and r0 is a typical radius where

the turbulence considered in this paper (resistive

ballooning) develops. In the case studied here, we use

rc = 53.25cm and Δθc = 2π/5 for the coils geometry,

and we use n0 = 4, with qx=0 = q0 = 3, so that the

central poloidal harmonic number is m0 = 12. Note

that this is a simple matter of choice (12 : 4 base

mode on TEXTOR-DED [3]), and that the results

are valid for any resonant perturbation ψRMP (x, y, z)

of the form given above.

Let the pressure be decomposed into mean part

and harmonics: p̄ = �p�y,z, p̃ = p − p̄. In a steady-

state, equation (2), with conserved total flux Qtot =�
S(x)dx = Cte and δc → 0, leads to the following

equation:

�Qconv�+ χ⊥

����
d�p̄�
dx

����+ �QRMP � = Qtot (3)

where QRMP = χ��∂ψRMP
∂y

∇�p�y,z represents
the heat flux due to the magnetic flutter generated

by the RMPs, and Qconv = �p̃ṽx�y,z is the convective
heat flux, where ṽx denotes fluctuations of the radial

velocity, �. . .�y,z is an average over the poloidal and
toroidal directions and �. . .� denotes a time average.

3. Simulation results and discussion
We present time series of the energy content�

p̄ dx and convective flux Qconv, in presence of an

imposed mean sheared flow, for different values of

the divertor current ID [Fig. 1 a-f]. The mean flow
∂φ
∂x

is artificially forced and the imposed flow pro-

file VF (x) = Ωd tanh(x/d), chosen to be centered at

x = 0, is strongly sheared with shear rate Ω and shear-

layer width d. For comparison, we also performed the

same simulations in a case with no mean sheared flow

(not shown here), for different values of the divertor

current ID, and also in the following cases: with only

self-generated zonal flows, and with suppressed self-

generated zonal flows.

In the reference case without RMPs, the energy

content increases on a collisional time-scale, until a

steady-state is reached, where we observe so-called re-

laxation oscillations [Fig. 1a], corresponding to a re-

laxation of the pressure gradient. These relaxations

are synchronous to the heat bursts observed on the

heat-flux time series [Fig. 1b] and therefore also cor-

respond to relaxations of the transport barrier. We

also present time series of the convective flux, in the

case without RMPs, for two different values of the

shear-layer width d [Fig. 2 a,b]. As seen from the

comparison of Fig. 1 and Fig. 2, there is a strik-

ing similarity between the effects of a decrease in the

shear-layer width d and the effects of RMPs on the dy-

namics of ETB relaxations. Our simulations therefore

suggest that the main effect of RMPs in presence of

an ETB is to modify the geometrical properties of the

ETB, e.g its width, position, etc..., yielding a reduc-

tion in the amplitude and frequency of the elmy-like

relaxations, and therefore leading to grassy elmy-like

relaxations.

In the case with RMPs, the energy content shows

that the relaxation oscillations are suppressed by the

RMPs , and this suppression is more efficient for

higher values of the perturbation current ID [Fig.

1c,1e]. This suppression of relaxations is also shown

as a reduction in the amplitude of the heat bursts

and an increase in their frequency.

We also show results for the radial profile of the

pressure gradient |d�p̄�
dx

| [Fig. 3a] and the convective
flux Qconv [Fig. 3b], in presence of an imposed mean

sheared flow, for different values of the divertor cur-

rent ID.

In the reference case without RMPs (ID = 0) but

with a mean shear flow (Ω = 4), the convective flux

Qconv [Fig. 3b] is reduced around the position x = 0

compared with a case with no mean sheared flow. A

high pressure gradient |d�p̄�
dx

| around this position, also
referred to as an Edge Transport Barrier (ETB) is

created at the position of maximal flow-shear x = 0

[Fig. 3a]. The appearance of this strong pressure gra-

dient is linked to a severe reduction in the convective

heat flux Qconv by the mean sheared flow as seen from

the conservation of energy (3) with QRMP = 0:

�Q0
conv�+ χ⊥

����
d�p̄0�
dx

���� = Qtot (4)

where the superscript 0 indicates the reference case

without RMPs (ID = 0).

In the case when there is a combination of a mean

shear flow (Ω = 4) and RMPs (ID �= 0), the ETB due
to the mean shear flow (and enhanced by the RMPs) is

eroded in the vicinity of the position x ∼ 0, compared
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Fig. 1 Effects of RMPs on the dynamics of barrier relax-
ations: time traces of the thermal energy (a,c,e)
and the radial heat flux (b,d,f), in presence of an
imposed mean shear flow with shear rate Ω = 4,
for (a, b) no RMP perturbation, (c, d) ID = 0.5 kA

and (e, f) ID = 1 kA.
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Fig. 2 Effects of width d of the shear-layer on the dynam-
ics of barrier relaxations: time traces of the radial
turbulent flux, in the case without RMPs, in pres-
ence of an imposed mean sheared flow with shear
rate Ω = 2, for a) d = 20% and b) d = 10%.

to the case without RMPs [Fig. 3a]. This erosion of

the ETB only appears when both a mean shear flow

and RMPs are present, and therefore can be explained

by a synergetic effect.

We propose the following model based on the bal-

ance of heat fluxes, to explain the behaviour of the

convective flux and pressure gradient in the presence

of RMPs and a shearflow-induced transport barrier.

Taken into account RMPs, the pressure harmonics can

be further decomposed into an equilibrium and a tur-

bulent part: p̃ = p̃eq(x, y, z)+ p̃turb(x, y, z, t), and sim-

ilarly for the radial velocity harmonics ṽx. The energy
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Fig. 3 Effects of resonant magnetic perturbations on: (a)
the pressure gradient and (b,c) radial heat fluxes,
for different values of the perturbation current ID.
Qconv denotes the convective heat flux and QRMP

is the conductive heat flux induced by the reso-
nant magnetic perturbations. The total heat flux
is Qtot = 10.
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Fig. 4 Components of the radial convective flux: (a) tur-
bulent convective flux Qturb

conv, and (b) equilibrium
convective flux Qeq

conv, e.g. RMP-linked, for differ-
ent values of the perturbation current ID. The total
heat flux is Qtot = 10.
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Fig. 5 Effects of RMPs on the topology of magnetic field
lines: Poincare map for a perturbation current of
ID = 0.5 kA. There is clear evidence of resid-
ual magnetic island chains, and stochasticity in be-
tween them.
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Fig. 6 Effects of RMPs on the convective heat flux, in the
case where the mean flow is artificially suppressed.

balance (3) can then be written:

Qeqconv+�Qturbconv�+χ⊥

����
d�p̄�
dx

����+�QRMP � = Qtot(5)

where Qeqconv(x) = �p̃eq ṽeqx �y,z is the equilibrium con-

vective flux and Qturbconv(x, t) = �p̃turbṽturbx �y,z is the
turbulent convective flux. Radial profiles of the equi-

librium convective flux and of the (time-averaged) tur-

bulent convective flux are shown for different values of

the perturbation current ID [Fig. 4].

Because of the presence of localized residual island

chains (as seen on Figure 5), depending on the region

considered, there are three different limits:

i) Close to the resonant surface x = 0, e.g.

|x| � w
2 � d, where w ∼ 2√ID is the magnetic island

chain width and d is the shear-layer width of the mean

flow (chosen to be centered at x = 0), the turbulent

convective flux is reduced by the sheared flow and ad-

ditionnally reduced by RMPs due to stochastic trans-

port [Fig. 5 and 6] so that �Qturbconv�/Qtot � 1 [Fig 4a],

and an equilibrium convective flux Qeqconv indirectly

linked to RMPs appears [Fig. 4b]. This equilibrium

convective flux is a consequence of the presence of an

RMP-induced residual magnetic island chain at the

radius r = r0 = 0.45 [m] corresponding to the posi-

tion x = 0 [Fig 5]. Moreover, the RMP induced flux

is low in the vicinity of x = 0: �QRMP �/Qtot � 1

[Fig. 3c]. Therefore, the energy balance (5) simplifies

to: Qeqconv + χ⊥

���d�p̄�dx

��� ∼ Qtot so that, in the region

x ∼ 0, the appearance of the equilibrium convective

flux Qeqconv must be balanced by a decrease in the pres-

sure gradient, seen on Figure 3a, similar to a flatten-

ing of the pressure profile that occurs in the study of

plasma macroinstabilities [5].

ii) For x negative, far from the resonant surface, e.g.

x � −w
2 � −d, the RMP-linked equilibrium con-

vective flux is small Qeqconv/Qtot � 1, since there

is no residual island chain in this region, so it does

not play any role. The turbulent convective flux

�Qturbconv� is reduced by the mean-shear flow. Moreover,
the RMP-induced flux QRMP is small in this region

�QRMP �/Qtot � 1. Therefore, the energy balance (5)

reduces to:

�Qturbconv�+ χ⊥

����
d�p̄�
dx

���� ∼ Qtot (6)

Moreover, in this region, the turbulent convec-

tive flux does not depend on the perturbation current

ID [Fig. 4a], because the magnetic field lines are not

stochastic [Fig. 5], so for x � −w
2 � −d, we have

�Qturbconv� ∼ �Q0
conv� and therefore equations (4) and

(6) imply:
��� d�p̄�dx

��� ∼
���d�p̄�0dx

���. Thus the pressure gradi-
ent profile is only weakly modified by the RMPs in

the region x � −w
2 � −d [Fig. 3a].

iii) For x positive, far from the resonant sur-

face, e.g. w
2 � x � d, the equilibrium convective

flux is small (�Qeqconv�), since there is no residual is-
land chains. The energy balance (3) thus reduces to:

�Qturbconv�+ χ⊥

���d�p̄�dx

���+ �QRMP � ∼ Qtot. An increase in

the perturbation current ID causes an increase in the

RMP-induced heat flux �QRMP �, but it induces also a
decrease in the turbulent convective heat flux �Qturbconv�,
linked to stochastic transport [Fig. 4a].

In this region, there is therefore a competition be-

tween the �QRMP � and �Qturbconv� heat fluxes, which may
explain the fact that, in the region w

2 � x � d, the

pressure gradient increases for small perturbation cur-

rents and decreases for higher perturbation currents

[Fig 3a].

4. Conclusions
In this work, we investigated the effects of Res-

onant Magnetic Perturbations (RMPs) on transport

barrier relaxations. It is shown that RMPs have a

stabilizing effect on these relaxations, and that this

effect is linked to a modification of the pressure gra-

dient equilibrium profile due mainly to the formation

of magnetic island chains. An erosion of the pressure

gradient profile is observed at the surface of princi-

pal resonance, e.g at the rational surface q = m0/n0,

where m0, n0 are the principal poloidal wave-number
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and the toroidal wave-number of the RMPs, respec-

tively. This erosion is shown to be linked to the pres-

ence of residual magnetic island chains inducing a sta-

tionnary convective transport of heat (and particles)

in the radial direction. Far from the principal reso-

nance surface but inside the shear-layer, the pressure

gradient modifications are only linked to the presence

(or not) of stochastic resonance overlap.
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