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Electric potential in cusp magnetic field in a negative ion source is investigated analytically. A magnetic field that is 

symmetric about an axis and increases monotonically toward the wall is considered. The energy space is divided into three 

regions, that is, the reflection region that ions are reflected at the turning point toward the wall, the passing region, and the 

reciprocation region that ions are reciprocated between the two turning points. The potential profile is analyzed by solving 

the plasma-sheath equation that gives the electric potential in the plasma region and the sheath region near the wall 

self-consistently. The potential in the plasma region depends on the profile of the magnetic field and the ion temperature. 

As the increase of the magnetic field becomes large and the ion energy decreases, the potential drop in the plasma region 

decreases. On the other hand, dependence of the potential in the sheath region on the profile of the magnetic field and the 

ion temperature is small. 
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1. Introduction 

Neutral beam injection (NBI) using negative ion 

source is one of the most promising method of heating 

plasma confined magnetically in Tokamak. Plasma in a 

negative ion source is confined by a cusp magnetic field in 

order to reduce plasma loss on the wall. However, plasma 

particles that arrive to the cusp magnetic field move along 

the magnetic field and are lost through the cusp magnet 

region on the wall. Therefore, in plasma confinement it is 

important to investigate the plasma loss through the cusp 

magnetic field, especially the width of the plasma loss 

region, the so-called ‘cusp loss width’. It has been 

described that the cusp loss width of electron energy 

depends on a heat transmission coefficient defined by the 

ratio of the heat flux to the particle flux multiplied by the 

electron temperature along the magnetic field [1]. The heat 

transmission coefficient is related to the sheath potential 

near the wall surface. 

Emmert et al. investigated formation of the potential 

considering both the plasma region and the sheath region 

self-consistently by using a plasma-sheath equation [2]. 

Electric sheath between a metal surface and magnetized 

plasma was studied by considering with the particle orbits 

by U. Daybelge and B. Beion [3]. They assumed that the 

magnetic field was uniform and shown that the sheath 

potential was essentially independent of the angle of 

magnetic field. Sato et al. extended the method of Emmert 

et al. to a case of magnetized plasma. In their analysis, the 

magnetic field of which strength decreases monotonically 

toward the wall was considered [4]. However, the potential 

formation in the plasma and the sheath regions for the case 

of the magnetic field of which strength increases toward 

the wall such as the cusp magnetic in the negative ion 

sources has not been clearly understood.  

In this paper, we will investigate the potential profile 

near the wall in a magnetic field increasing monotonically 

toward the wall. The plasma-sheath equation is derived and 

solved self-consistently over the whole region from the 

plasma to the wall. 

 

2. Model 

The geometry of analytical model is shown in Fig. 1. 

The electric potential �(z) is assumed to be symmetric about 

z=0 and decreases monotonically for z>0 and zero at z=0. 

The magnetic field is assumed to be symmetric about z=0 

and increases monotonically for z>0 and B0 at z=0. 

 

3. Analysis of Electric Potential 

Constant energy E of an ion in the z-direction is 

       E =
1

2
M(��

2 +� //

2) + q�(z), (1) 

where M is the ion mass, �� and �// are the velocities 

perpendicular and parallel to the magnetic field, and q is the 

charge of the ion, respectively. The magnetic moment is 
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Fig.1 The geometry of the potential and the magnetic field in the 

analysis. 

 

given by 
   μ = (1/2) M��

2
B(z), (2)  

where B(z) is the magnetic field at the position z. The kinetic 

equation in the phase space (z,E,μ) is described by 

  �� // (z,E,μ)
�f (z,E,μ,� )

�z
= S(z,E,μ), (3) 

where �(=±1) is the direction of the particle motion, 

f(z,E,μ,�) is the distribution function, and S(z,E,μ) is the 

source function. The velocity parallel to the magnetic field 

is given by  
  � // = [(2 / M){E �μB(z) � q�(z)}]1/ 2 . (4)  

We assume a symmetry about z=0, that is, �(�z)=�(z), 

B(�z)=B(z), and S(�z,E,μ)=S(z,E,μ). Furthermore, we 

assume that particles are not reflected at the wall, then the 

boundary condition of the distribution function is 

f(-L,E,μ,+1)=f(L,E,μ,�1)=0.  

In the magnetic field of which strength increases toward 

the wall, dependence of -μB(z)-q�(z) on z is divided into two 

cases as shown in Fig. 2. The case (i) is increase of μB(z) is 

larger than the decrease of q�(z), that is, μ(B(z)-B0)>-q�(z). In 

this case, -μB(z)-q�(z) becomes upwards convex as shown 

by the solid line. The case (ii) is increase of μB(z) is smaller 

than the decrease of q� (z), that is, μ(B(z)-B0)<-q�(z). In this 

case, -μB(z)-q�(z) becomes downwards convex as shown by 

the dotted line. Where monotonic decrease of the electric 

potential and monotonic increase of the magnetic field are 

assumed. 

In each case, particle motion is divided into some 

regions depending on it’s energy, which comes from the 

conditions that �// must be real number, that is, 

E� μB(z)�q�(z)�0 as shown in Fig. 3. For the case of 

upwards convex, ion in the energy region of 

E> μB(±L)+q� (±L) can reach and pass thorough the center 

of the plasma. Ion in the energy region of 

Emin<E< μB(±L)+q�(±L) cannot reach the wall and repeats 

the reciprocation between the turning points z=�zt(E) and 

zt(E), where Emin=μB(z)+q� (z). Ion in the energy region of 

E<Emin cannot exist. On the other hand, for the case of 

downwards convex, ion in the energy region of E>μB0 can 

reach and pass thorough the center of the plasma. Ion in the 

energy region of Emin<E< μB0 cannot reach the center of the 

plasma and reflected at the turning point z=zt(E) for � =�1 

and z=�zt(E) for � =1.  Ion in the energy region of E<Emin 

cannot exist.  

The distribution functions f(z,E,μ,�) for the cases of (i)  

 

z
0 L�L
�μB

0

-μB(z)-q�(z)

 
Fig.2 Dependence of-μB(z)-q� (z) on z. Solid line is for the case of 

μ(B(z)-B0)>-q��(z) and dotted line is the case of 

μ(B(z)-B0)<-q� (z).    

 

z
0 L�L

E=μB( L)+q�( L)- -+ +

zt�zt

E-μB(z)-q�(z)

 

z
0 L�L

E=μB
0

zt
�zt

E-μB(z)-q�(z)

 
          (i)                      (ii) 

Fig.3 Energy spaces of the ion of (i) upwards convex and (ii) 

downwards convex. 

 

and (ii) are obtained for �=± 1 by integrating Eq. (3) for 

particle trajectory on the boundary conditions. The sum of 

the distribution functions about �=±1 for each energy region 

of the cases (i) and (ii) becomes 

f (z,E,μ,� )
�

� =

2
S( � z ,E,μ)

� // (z,E,μ)0

L

� d � z , (E > μB(±L) + q�(±L)),

2
S( � z ,E,μ)

� // (z,E,μ)0

zt (E ,μ )

� d � z , (Emin < E < μB(±L) + q�(±L)),

� 

� 

� � 

� 

� 
� 

(5)

and 

f (z,E,μ,� )
�

� =

2
S( � z ,E,μ)

� // (z,E,μ)0

L

� d � z , (E > μB0),

2
S( � z ,E,μ)

� // (z,E,μ)zt (E ,μ )

L

� d � z , (Emin < E < μB0),

� 

� 

� � 

� 

� 
� 

(6)
 

respectively, where z´ is the position of ion generation.  

The ion density is obtained by integrating f(z,E,μ,�) 

over the E-μ space as [4] 

       ni(z) =
2�B(z)

M
2

dE dμ
f (z,E,μ,�)

� // (z,E,μ)
��

�

� . (7) 

Substituting Eq. (5) into Eq. (7), the ion density ni for the 

case (i) becomes 

ni(z) =
4�B(z)

M
2

dE�q� (z)B(±L )

B(z)�B0

+q� (±L )

�

�
� 

� 
� 

� dμ
1

� // (z,E,μ)
�q� (z)

B(z)�B0

1

B (±L )
{E�q� (±L )}

�
S( � z ,E,μ)

� // ( � z ,E,μ)
d � z 

0

L

�

+ dE dμ�q� (z)

B(z)�B0

1

B (z )
{E�q� (z)}

��q� (z )B (z )

B(z)�B0

+q� (z )

�q� (z)B(±L )

B(z)�B0

+q� (±L )

�
1

� // (z,E,μ)

�
S( � z ,E,μ)

� // ( � z ,E,μ)
d � z 

0

zt (E ,μ )

� + dE�q� (z )B (±L )

B (z )�B0

+q� (±L )

�

�

� dμ
1

� // (z,E,μ)

S( � z ,E,μ)

� // ( � z ,E,μ)
d � z 

0

zt (E ,μ )

�1

B (±L )
{E�q� (±L )}

1

B(z)
{E�q� (z )}

�
� 

� 
� , (8)

and Eq. (6) into Eq. (7), ni for the case (ii) becomes 
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ni(z) =
4�B(z)

M
2

dE dμ
1

� // (z,E,μ)

S( � z ,E,μ)

� // ( � z ,E,μ)
d � z 

0

L

�
0

E

B0�
0

�q� (z )B0

B (z )�B0�
� 

� 
� 

+ dE dμ
1

� // (z,E,μ)

S( � z ,E,μ)

� // ( � z ,E,μ)
d � z 

0

L

�
0

�q� (z)

B(z)�B0��q� (z )B0

B (z )�B0

�

�

+ dE dμ
1

� // (z,E,μ)

S( � z ,E,μ)

� // ( � z ,E,μ)
d � z 

zt

L

�E

B0

1

B (z )
{E�q� (z)}

�
0

�q� (z)B0

B(z)�B0�

+ dE dμ
1

� // (z,E,μ)

S( � z ,E,μ)

� // ( � z ,E,μ)
d � z 

zt

L

�
0

1

B (z )
{E�q� (z)}

�
q� (z)

0

�
� 

� 
� . (9)

Here, we assume the magnetic field B of which increase rate 

is smaller than the decrease rate of q�. By interchanging the 

order of integrations of Eqs. (8) and (9), respectively and 

taking sum of them, the ion density can be written as  

ni(z) =
4�B(z)

M
2

d � z 
0

L

� dE�E p B0

B p �B0

�

�
� 

� 
� � 

� dμ
1

� // (z,E,μ)

S( � z ,E,μ)

� // ( � z ,E,μ)0

1

B (z )
{E�q� (z)}

�

+ d � z 
0

L

� dE dμ
1

� // (z,E,μ)

S( � z ,E,μ)

� // ( � z ,E,μ)0

1

B p

(E�E p )

�
E p

�E p B0

B p �B0�
� 

� 
� , (10)

where Ep=q�(z’) and Bp=B(z’) for z’<z and Ep=q�(z) and 

Bp=B(z) for z’>z according to the conditions that �// must be 

real number.  

As the source function S(z,E,μ), we use the expression 

same as Emmert et al. [2] 

S(z,E,μ) = S0h(z)
M

2

4� (kTi)
2
� // (z,E,μ)exp �

E � e�(z)

kTi

� 
� 
� 

� 
� 
� 
, (11)

  

where Ti is the temperatures, h(z) is the source strength, and 

S0 is the average source strength of the ion, respectively. 

Substituting Eq. (11) into Eq. (10) and integrating it for μ 

and E, the ion density becomes 

 ni(z) = S0

�M

2kTi

� 

� 
� 

� 

� 
� 

1/ 2

d � z 
0

L

� I(z, � z )h( � z ), (12)   

where 

I(z,z') =

exp
q�( � z ) � q�(z)

kTi

� 
� 
� 

� 
� 
� 
erfc

q�( � z ) � q�(z)

kTi

� 
� 
� 

� 
� 
� 

1/ 2� 

� 

� 
� 

� 

� 
� 
� 

+
2

�

(B(z) � B0)q�( � z ) � (B( � z ) � B0)q�(z)

kTi(B( � z ) � B0)

� 
� 
� 

� 
� 
� 

1/ 2

� exp
q�( � z )B( � z )

kTi(B( � z ) � B0)

� 
� 
� 

� 
� 
� 

+
B(z) � B( � z )

B( � z )

� 
� 
� 

� 
� 
� 

1/ 2
2

�

� exp
(q�( � z ) � q�(z))B( � z )

kTi(B( � z ) � B(z))

� 
� 
� 

� 
� 
� 

D �
(q�( � z ) � q�(z))B( � z )

kTi(B( � z ) � B(z))

� 
� 
� 

� 
� 
� 

1/ 2� 

� 
� 
� 

� 

� 
� 
� 

� 

� 

� 
� 

�D �
(B(z) � B0)q�( � z ) � (B( � z ) � B0)q�(z){ }B( � z )

kTi(B( � z ) � B(z))(B( � z ) � B0)

� 
� 
� 

� 
� 
� 

1/ 2� 

� 
� 
� 

� 

� 
� 
� 

� 

� 

� 
� 
, � z < z

exp
q�( � z ) � q�(z)

kTi

� 
� 
� 

� 
� 
� 
, � z > z

� 

� 

� 
� 
� 
� 
� 
� 
� 
� 
� � 

� 

� 
� 
� 
� 
� 
� 
� 
� 
� 
� 

                                           (13) 

where D(z) is the Dawson function [5] 

      D(x) = exp(t 2)dt
0

x

� . (14) 

For the electron density ne, we use a Maxwell�Boltzmann 

distribution for simplicity 

      ne (z) = n0 exp{e�(z) /kTe}, (15) 

where n0 is the density at z=0, �e is the electron charge, k is 

the Boltzmann’s constant, and Te is the electron temperature. 

Substituting Eqs. (12) and (15) into Poisson’s equation, 

the plasma-sheath equation is derived as 

�D

2 e

kTe

d2�

dz
2

= exp
e�(z)

kTe

� 

� 
� 

� 

� 
� �

q

e

S0

n0

�M

2kTi

� 

� 
� 

� 

� 
� 

1/ 2

d � z 
0

L

� I(z, � z )h( � z ), (16)

where �D=(�0kTe/n0e
2)1/2 is the Debye length. The average 

source strength S0 is decided by the equilibrium of the fluxes 

of the plasma particles at the wall. We consider that 

jiw+jew=0, where jiw is the ion current density and jew is the 

electron current density at the wall, then  

 � S0

q

e
L = n0

kTe

2�m

� 

� 
� 

� 

� 
� 

1/ 2

exp
e�w

kTe

� 

� 
� 

� 

� 
� , (17) 

where m is the electron mass and �w is the wall potential.  

Substituting S0 given by Eq. (17) into Eq. (16), we obtain 

 
�D

2 e

kTe

d2�(z)

dz
2

= exp
e�(z)

kTe

� 

� 
� 

� 

� 
� �

1

2L

M

m

Te

Ti

� 

� 
� 

� 

� 
� 

1/ 2

exp
e�w

kTe

� 

� 
� 

� 

� 
� 

� d � z 
0

L

� I(z, � z )h( � z ). (18)

 

 

4. Numerical Solution of the Plasma-Sheath 

Equation 

Here, we introduce the normalized variables: 

�=(e/kTe)(�w��), s=z/L, �=Te/Ti, Z=q/e, R=B/B0, where R is 

the mirror ratio. The mirror ratio R can be expressed by the 

function of � because that the electrical potential and the 

magnetic field are assumed to vary monotonically and the 

coordinate s corresponds to the value of � at each position. 

We assume the mirror ratio to be given by  

        R(�) = exp � � � e�w /(kTe){ }
1/ 2[ ]. (19) 

The normalized plasma-sheath equation is solved 

numerically by transforming it into a set of finite difference 

equations and using a Newton method and a successive 

over�relaxation method [6,7]. The boundary conditions are 

d�/ds|s=0=0 and �(s=1)=0. We assume that the ion source is 

uniform, that is, h(z)=1. 

The numerically solved profile of the potential for 

various values of �D/L is shown in Fig. 4, where Z=1, 

�=Te/Ti=1 and �=0.4. Where the normalized potential �=�� 

e�w/(kTe)=�e�/(kTe) is shown. The potential drop increases 

and the sheath width also increases as �D/L increases. The 

profiles of the mirror ratio and the potential for various 

values of � are shown in Fig. 5 and Fig. 6, respectively, 

where Z=1, �=1 and �D/L=5x10�2. As the value of � 

increases, the mirror ratio becomes large, especially near the 

wall, and the potential drop decreases. This may be because 

that as the value of � increases, the ions are reflected by the 
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Fig.4 Profile of the normalized potential � =-e�/kTe for various 

values of �D/L under the conditions of Z=1, �=Te/Ti =1.0, and 

�=0.4. 
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Fig.5 Profile of the mirror ratio R for various values of � under the 

conditions of Z=1, �=Te/Ti =1.0, and �D/L=5x10
-2

. 
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Fig.6 Profile of the normalized potential �=-e�/kTe for various 

values of � under the conditions of Z=1, �=Te/Ti =1.0, and 

�D/L=5x10
-2
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increasing magnetic field near the wall and reciprocated 

between the two turning points. As a result, the ions in the 

plasma region increase and the potential drop decrease. On 

the other hand, the potential in the sheath region does not 

depend greatly on the value of �. The profiles of the mirror 

ratio and the potential for various values of the temperature 

ratio � are shown in Fig. 7 and Fig.8, respectively, where 

Z=1, �=0.4 and �D/L=5x10-2. As the value of �=Te/Ti 

increases, the mirror ratio and the potential drop decrease. It 

may be because that the low energy ions are reflected by the 

strong magnetic field near the wall and reciprocated 

between the two turning points. Although the magnetic field 

in the plasma region decreases as the value of � increases, it 

does not depend greatly on the value of � in the sheath  
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Fig.7 Profile of the mirror ratio R for various values of the 

temperature rate t=Te/Ti under the conditions of Z=1, 

R=exp(�� 
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), �=0.4 and �D/L=5x10
-2

. 

 

    0.2 0.4 0.6 0.8 1

0.5

1

1.5

2

2.5

3

�=1

�=0.1

�=0.8
�=0.6

s

�

0

�=0.2 �=0.4

 
Fig.8 Profile of the normalized potential �=-e�/kTe for various 

values of the temperature rate t=Te/Ti under the conditions of 

Z=1, R=exp(�� 
1/2

), �=0.4 and �D/L=5x10
-2

. 

 

region. As a result, the ions in the plasma region increase 

and the potential drop decreases. The potential in the sheath 

region also does not depend greatly on the value of �. 

 

5. Conclusions  

The electric potential near the wall has been 

investigated by considering the magnetic field increasing 

toward the wall. The profile of the potential has been 

obtained by solving the plasma-sheath equation. The 

potential drop in the plasma region depends on the profile of 

the magnetic field and the ion temperature. On the other 

hand, dependence of the potential in the sheath region on 

them is small.  
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