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For analytic simplicity, the magnetized plasma-wall transition (MPWT) layer occurring, e.g., near tokamak divertors, is 
usually split into three sublayers: the Debye sheath (DS), the magnetic presheath (MPS) and the collisional presheath (CPS), 
with characteristic (indicated by superscript “ch”) length scales ch

D�  (electron Debye length), ch

i�  (ion gyro-radius) and 
ch

c�  (smallest relevant ion collision length), respectively. The values of these characteristic lengths are taken at certain 
characteristic points of the respective sublayers, whereas the gradient lengths vary with position. We introduce a new method 
for systematically investigating the behavior of gradient-length scales in the MPWT. The gradient lengths are used to replace 
in the fluid equations all gradients, which transforms these equations into an algebraic system. Here, as a first example of 
application, this method is applied to the MPWT in the asymptotic three-scale (A3S) limit ch ch ch

D i c� � �� � .  . 
Keywords: Plasma-wall transition, Debye sheath, magnetic presheath, collisional presheath, plasma-wall interaction, 
tokamak plasma. 
 
1. Introduction 

In the presence of a magnetic field oblique to the wall, 
the plasma-wall transition (PWT) layer can be divided into 
three regions, namely: Debye sheath (DS), magnetic 
presheath (MPS) and collisional presheath (CPS) [1]. In 
the classical PWT problem without magnetic field, 
monotonicity of the electric potential requires fulfillment 
of the Bohm condition at the interface between the CPS 
(with the characteristic collisional length ~ ch

c� ,chosen 
appropriately) and the DS (~ ch

D� ). Chodura was the first to 
investigate the MPS in an oblique magnetic field without 
any collisional effects [2]. The MPS was found to scale 
with the characteristic ion gyro-radius ch

i
�  For the 

limiting ordering of the scale variables, i.e., 
ch ch ch

D i c
� � ��� �� , the problem contains three 
distinguished scales and, in this “asymptotic three-scale 
(A3S) limit”, i.e. for 0ch ch

Dm D i
� � �� �

 
 and 

0ch ch

mc i c
� � �� � , the DS can be characterized as 
collisionless and non-neutral, the MPS as collisionless and 
quasi-neutral ( i en n� ) [2] and the CPS as collisional and 
quasi-neutral.  
The DS and the MPS regions are separated by the sheath 
edge. From the MPS side it is characterized by a field 
singularity, and from the DS side by the marginal form of 
the Bohm condition,

 z su c� � � � 1/ 2
/

e i i
k T T m��� �� �  

( sc is 
the ion-sound velocity, k is the Boltzmann constant, and 
�(z) is the polytropic coefficient [3]). The MPS-CPS 
boundary surface is referred to as the “MPS entrance”. 
Below we show that quite in analogy with the 
unmagnetized PWT, the MPS entrance can be defined as a 
point were the electric field has a singularity from the CPS 
side. The condition imposed from the MPS side is similar 

to the Bohm condition, but the ion velocity must be 
directed along the magnetic field line, || su c� . This is 
called as Bohm-Chodura condition. Hence the dominant 
effect of the MPS is to deflect the ion orbits, so that the 
velocity component zu , can fulfill the Bohm condition at 
the DS entrance [1,4]. 

 
 2. Model and basic equations 

The problem is 1D, with the z axis perpendicular to the 
wall surface placed at 0.z �   The plasma occupies the 
region 0.z �  The electric potential �  decreases 
towards the wall monotonically. The uniform magnetic 
field is assumed to be lying in the x z�  plane, making a 
small angle �  with the wall. The thermal motion of the 
ions is neglected, Ti � 0 
     To describe the magnetized plasma-wall transition 
(MPWT), we choose the following set of basic equations 
and definitions. 
     Ion continuity equation: 

Fig. 1  Structure of the MPWT 
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(2.1) 

where �i is the “ionization frequency" (related to single 
electrons), �ne is the “recombination frequency" (related 
to single ions), and 

  (2.2) 
is the combined frequency at which single ions appear (�ir 

> 0) or disappear (�ir < 0) due to the combined effect of 
ionization and recombination. 

Ion momentum equations: 

.  
 

(2.3) 

 
 

(2.4) 

 
 

(2.5) 

with 

  (2.6) 

the ion-cyclotron-frequency vector and 

  (2.7) 
the combined charge-exchange, ionization and 
recombination frequency. 
      Electron density: 

  (2.8) 
with � �en �  a given function. The related “electron 
screening temperature" is defined as 

 
 

(2.9) 

and, hence, may be considered a given function of � as 
well. 

 
 

(2.10) 

 
 

(2.11) 

 
    (2.12) 

 
    

(2.13) 

In addition we introduce the electric charge density 

 
    (2.14) 

which, depending on convenience, may be used 
alternatively instead of ne as a variable. 
 
3. Gradient-length representation 

The length scales on which the various quantities vary 
with z play a crucial role in determining the structure of 
the solutions. To formalize the related analysis, we rewrite 
gradients (i.e., derivatives with respect to z ) in the form 

     (3.1) 

where Q(z) may be any variable and � �gQ z is a typical 
value of Q suitable for defining the “local gradient length” 

Ql  at position z ,  

 
 

(3.2) 

which in general may assume positive or negative values. 
Clearly,

Q
l may be interpreted as the distance over which 

the change in Q is of the order of gQ . Accordingly, we 
can write 

   
 

   
(3.3) 

   
 

In addition we define the local ion gyroradius � �i z� , the 
local electron Debye length � �De z� , as well as the local 
collisional lengths � �il z (“ionization length"), � �rl z  
(“recombination length"), � �irl z (“combined ionization 
and recombination length"), � �cxl z (“charge-exchange 
mean free path") and � �l z (combined CX-ionization and 
recombination length") by 

  
(3.4) 

and 
  

 

  
(3.5) 
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respectively. These lengths may be considered to be 
the “natural” lengths existing in our problem. Let us also 
define the “dominant" (i.e., smallest) collision lengths as 

  (3.6) 
With the definitions (3.3), Eqs. (2.1), (2.3) � (2.5) and 
(2.9) � (2.11) can be rewritten in the gradient-length form 

        (3.7) 

     (3.8) 

 
              

(3.9) 

 
 

(3.10) 

   (3.11) 

    (3.12) 

and 

   (3.13) 

              (3.14) 

respectively, and differentiating (2.14) we find 

   (3.15) 

For later use we introduce the additional definitions 
   (3.16) 

   

  (3.17) 

and 
  

(3.18) 

Equations (3.7) � (3.15) represent a system of 9 equations 
interrelating the 9 gradient lengths � � ,uxl z � � ,uyl z  

� � ,uzl z � � ,nel z � � ,nil z � � ,pil z � � ,El z � � ,l z� � �l z� and the 

9 scalar functions � � ,xu z � � ,yu z � � ,zu z � � ,en z  � � ,in z  
� � ,ip z � � ,E z � �z� and � � ,z� which are the solution 

functions of the 9 original basic equations (2.1), (2.3) � 
(2.5), (2.9) � (2.11), (2.13) and (2.14). In particular, the 
gradient lengths can be expressed in terms of the solution 
functions as follows: 

   (3.19) 

   (3.20) 

 
  

(3.21) 

   (3.22) 

 
  

(3.23) 

 
  

(3.24) 

   (3.25) 

   (3.26) 

With the help of Eqs. (3.19), (3.20) and (3.22)�(3.26), Eq. 
(3.21) can be cast into the following form, which will be 
used below: 

 

  

(3.27) 

 
4. Gradient-length analysis of the MPWT 

4.1. MPS entrance 

In the A3S limit, both the CPS and the MPS are 
quasineutral, so that in Eq. (3.27) we set ˆ 0.� �  
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lengths are 
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   (4.1) 

From (3.27) we find 

 

  

(4.2) 

From (3.9) and (4.1) it follows that 
(4.3) 

Then from (4.2) we find 

 
  

(4.4) 

If the marginal form of the Bohm-Chodura condition, 

(4.5) 
is fulfilled, we have 0uxl � . This means that the derivative 
of the ion velocity (and the electric field) has a singularity. 
The point where the marginal Bohm-Chodura condition is 
fulfilled can be considered as the MPS entrance as seen 
from the CPS side. 
(ii) Close to the MPS entrance, we have from the MPS side 

(4.6) 

The quasineutrality condition, ˆ 0� � , is again fulfilled. 
From Eq. (3.27) we have 

 
  

(4.7) 

where 

  (4.8) 

It can be shown that 
(4.9) 

with which straightforward calculations lead to the result 

(4.10) 

Hence at 
(4.11) 

we have 
(4.12) 

which means that on the scale of the ion gyroradius the z 
velocity component tends monotonically towards a 
constant value. The same behavior can be shown to be true 
for the other physical quantities as well. The relation 
(4.11) is known as the non-marginal form of the 
Bohm-Chodura condition for the MPS entrance. 

 4.2.  DS entrance 

For the definition of the DS entrance, we can again use Eq. 
(3.27). 
(i) For the analysis of the MPS-DS transition from the 
MPS side, we again assume, besides quasineutrality, the 
length relations (4.6). From (3.9), (3.10) and (3.27) we 
then obtain 

(4.13) 
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(4.15) 

Substitution of (4.13) and (4.14) into (4.15) yields 
(4.16) 
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(4.17) 

is the Bohm condition in the marginal form, defining the 
singularity point where 0.uzl � This point is defined as the 
DS entrance in the A3S limit 
(ii) From the DS side the quasineutrality is broken 
� �0 ,� � and the gradient lengths satisfy the condition 
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From Eq. (3.27) we obtain 
(4.19) 

Using Eqs. (3.11), (3.12) and (3.18), we obtain from (4.19) 

(4.20) 
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      (4.22) 

we have 
 (4.23) 

This means that on the scale of the Debye length the 
electric field on the DS side tends asymptotically towards 
a constant value. The same behavior can be shown to be 
true for the other physical quantities as well. 
 
5.  Conclusion

A new method for analyzing the magnetized 
plasma-wall transition (MPWT), based on local and  
characteristic gradient-length scales, has been introduced 
(Sec. 3). By means of this new method, the CPS-MPS and 
MPS-DS transitions have been investigated (Sec. 4) for a 
fairly general MPWT model (Sec. 2). It has been found for 
the first time that the MPS-CPS interface (MPS entrance) 
can be defined as a surface where the electric field from 
the CPS side has a singularity, quite in analogy with the 
CPS-DS transition of the unmagnetized PWT. Regarding 
the MPS-DS interface, previous results have been 
recovered. The present work adds a significant 
contribution to the analysis and understanding of the 
MPWT.   
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