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Magnetic helicity plays important role in solar dynamo and magnetic field variations. It is important
for explaining the observed variations of the sunspot number variations during solar cycles of activity.
For comparison we consider the classical Parker’s dynamo model [1] and the Kleeorin-Ruzmaikin model
[2]. We found that in the low-order approximation the Parker’s model (without magnetic helicity)
does not allows to reproduce the typical behavior of the sunspot number with a fast growth and slow
decay or obtain a chaotic solution, even in strong nonlinear regimes. The analysis of the Kleeorin-
Ruzmaikin model shows the existence of nonlinear periodic and chaotic solutions for conditions of
the solar convective zone. For this model we obtain profiles of the sunspot number variations, which
qualitatively reproduce the typical profile of the solar cycles. We apply the Ensemble Kalman Filter
method and show the the sunspot data can be assimilated in the dynamo model. This opens perspectives
for estimating the physical state of the solar dynamo and for forcasting the solar activity cycles.
Keywords: Magnetohydrodynamics, turbulence, solar dynamo, solar activity, solar magnetic fields,

sunspots, data assimilation, Ensemble Kalman Filter method

1. Introduction
Solar magnetic fields are generated by a dynamo

action in the turbulent plasma of the Sun’s interior.
One of the manifestations of solar magnetic activity
is the 11-year sunspot cycle, (Fig. 1), which is char-
acterized by the fast growth and slowly decay of the
sunspot number parameter. For an explanation of the
magnetic field generation Parker [1] proposed a simple
dynamo model, which describes the phenomenon as an
action of two factors: the differential rotation and cy-
clonic convective vortices. The mean-field theory and
discovery of the α-effect give us a general description
of the process of magnetic field generation [3].

The dynamo process is characterized by algebraic
and dynamic nonlinearities. The algebraic nonlinear-
ity can be determined as influence of the magnetic field
on fluid motions and on the kinetic helicity. This re-
sults in quenching of the electromotive force and limits
the growth of the magnetic field. The evolution of the
small-scale magnetic helicity in the turbulent plasma
causes a dynamical nonlinearity in the dynamo pro-
cess. The turbulent helicity conditionally can be di-
vided into two parts: hydrodynamic and magnetic.
The kinetic helicity describes helical turbulent fluid
motions; the magnetic helicity determines the order of
twisted magnetic field lines. Due to the fact that the
kinetic helicity makes the magnetic field small-scaled,
the back influence on the turbulent fluid motions can
restrict the unlimited growth of the magnetic field.

In the mean-field approach the magnetic helicity
is separated into large- and small-scale components.
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Because of the conservation of the total helicity a
growth of the large-scale magnetic helicity due to the
dynamo action is compensated by the growth of the
small-scale helicity of opposite sign [4]. Thus, the
small- and large-scale magnetic fields grow together
and are mirror-asymmetrical and hence the condition
of magnetic helicity conservation is, perhaps, more se-
vere for a restriction of the dynamo action than the
condition of the energy conservation, which leads to
quenching of the kinetic helicity.

For modeling the solar cycle we consider nonlin-
ear behavior of the Parker’s dynamo model (without
magnetic helicity) and the Kleeorin-Ruzmaikin model,
explicitly based on the idea of magnetic helicity con-
servation. For simplicity, we use a ”low-order model”
approach [5, 6], reducing the dynamo equations to a
simple nonlinear dynamical system. The goal of this
research is to find solutions, which can reproduce the
basic properties of the sunspot number variation. To
connect the dynamo model solutions with the sunspot

1775 1800 1825 1850 1875 1900 1925 1950 1975 2000
0

50

100

150

200

250

su
n

sp
o

t 
n

u
m

b
er

years

Fig. 1 Observed monthly sunspot number series for 1755
- 2007 yrs. from NGDC.
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number parameter we use two suggestions of Bracewell
[7,8]: 1) the information about the periodical reversals
of the magnetic field is included in the sunspot number
series by assigning alternating positive and negative
signs to the sunspot cycles, and 2) the sunspots num-
ber parameter is modeled in the form of a three-halfs
law: W ∼ B3/2, where W is the sunspot number, and
B is the strength of the Sun’s toroidal magnetic field.

2. Formulation of the Dynamo Models
It is well-known that the induction equation in the

mean-field approximation [9] for the case for isotropic
turbulence is written

∂ �B�
∂t

= ∇×(�v� × �B�+ α �B� − η∇× �B�) , (1)

where �B� represents the averaged over longitude mag-
netic field, �v� represents mean global-scale motions in
the Sun (such as the differential rotation), parameter
α is helicity, η describes the sum of the turbulent and
molecular magnetic diffusivity η = ηt + ηm (usually
ηm � ηt).

For describing the average magnetic field, follow-
ing [1], we choose a local coordinate system, xyz,
where axis z will represents the radial coordinate, axis
y is the azimuthal coordinate and axis x coincides with
colatitude (Fig. 2). Hence, the vector of the mean
field, �B�, can be represented as

�B� = B(x, y, z)ey +∇× [A(x, y, z)ey] , (2)

where B(x, y) is the toroidal component of magnetic
field, A(x, y) is the vector-potential of the poloidal
field. Assuming that �v� = υy(x)ey (rotational com-
ponent) we can write the dynamical system describing
Parker’s model of the α-dynamo [1] in the standard
form:

∂A

∂t
= αB + η∇2A (3)

∂B

∂t
= G

∂A

∂x
+ η∇2B, (4)

where G = ∂ �υy� /∂z is the rotational shear.

Fig. 2 Local Cartesian reference coordinate system.

Assuming that the coefficients are constants and
seeking a solution of the model in the form (A, B) ∼
(A0, B0) exp[i(kx − ωt)], we find the well-known re-
sult [1] that a pure periodic solution exists if D =
αG/η2k3 = 2, where D is the so-called ”dynamo num-
ber”. The solutions grow in time for |D| > 2, and
decay for |D| < 2.

According to the periodic solution for Parker’s
model, profiles of variation for toroidal and poloidal
components of magnetic field are sinusoidal. There-
fore, model solar cycle has symmetric profile and is dif-
ferent from the mean profile of the solar cycle. Then,
for deformation of a profile and obtaining chaotic so-
lutions we increase the dynamo number, and follow-
ing a standard procedure, we include a nonlinearity
(α-quenching) as α/(1 + ξB2) [10, 11], where ξ is a
quenching parameter, which limits the growth of the
magnetic field amplitude. However, our numerical
calculation showed that in the nonlinear regime the
variations of the toroidal field and the sunspot num-
ber are also periodic and similar to the classical case
of the linear harmonic solution for |D| = 2. Thus,
in the one-mode approximation the classical Parker’s
dynamo model even in nonlinear cases gives only pe-
riodic oscillatory solutions, and, therefore, cannot ex-
plain the observed variations of the sunspot number
in the solar cycles.

For creating chaotic variations of the magnetic
field it is necessary to add to the Parker’s model a
third equation describing variations of the magnetic
helicity and its interaction with the large-scale mag-
netic field [2, 12]:

∂αm

∂t
=

Q

2πρ

�
�B� (∇× �B�)− α

η
�B�2

�
−αm

T
,(5)

where Q ∼ 0.1, T is characteristic time of the mag-
netic diffusion. Equation (5) is written for the case
of an uniform turbulent diffusion, and when the mag-
netic Reynolds number is large, η ≈ ηt.

For analysis of the Kleeorin-Ruzmaikin model we
transform equations (3)-(5) into a nonlinear dynam-
ical system in nondimensional variables. Following
the approach of Weiss [6], we average the system of
equations (3)-(5) in a vertical layer to eliminate z-
dependence of A and B and consider a single Fourier
mode propagating in the x-direction assuming A =
A(t)eikx, B = B(t)eikx.

Note that the formulation and the interpretation
of solutions of the simplified system are not straight-
forward because it does not adequately describes non-
linear coupling of the spatial harmonics. So, dominant
modes of the toroidal field in the case of the solar dy-
namo are described by the harmonics [5], which are
antisymmetric with respect to the equator (in accor-
dance with the Hale law), sin(kx), where x is colat-
itude, and the wavenumber, k, is even: k = 2, 4, ...
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The first k = 2 harmonic has the largest growth rate.
We retain only this mode in our dynamical model.
Then equations (3)-(5) in nondimensional variables
became [13]

dA
dt

= DB − A,

dB
dt

= iA − B, (6)

dαm

dt
= −ναm +

�
AB − D

�
B2 − λA2

��
,

where D = D0α and α = αh + αm are the nondi-
mensional dynamo number and total helicity that is
the sum of kinetic and magnetic helicities, D0 =
α0Gr3/η2, α0 = 2Qkυ2

A/G, r is a layer radius, υA is
the Alfvén speed, ν = T0/T , T0 is characteristic time
of the turbulent diffusion [2] and λ = (k2η/G)2 =
Rm−2, k is a characteristic wavelength, Rm is the
magnetic Reynolds number.

3. Periodic and chaotic solutions
In order to estimate the range of parameters of the

Kleeorin-Ruzmaikin model (3)-(5), and for modeling
the solar cycle we used the standard model of the inte-
rior structure of the Sun for the top, bottom and mid-
dle areas of the convective zone. The key parameter of
the model is the dynamo number D = D0αh, because
its magnitude determines behavior of the magnetic
field, which depends on the rotational velocity and
magnetic field strength. Parameter λ determines the
influence of vector-potential A on variations of mag-
netic helicity αm. From our estimates it follows that
for the solar conditions λ ≤ 10−4. Consequently, we
can neglect the term with λ. The nondimensional pa-
rameter, ν, describes the ratio of two characteristic
times of turbulent (T0) and magnetic (T ) diffusivi-
ties. In the absence of helicity fluxes the value of the
damping parameter ν is small. However, in reality the
helicity fluxes increase the dissipation rate. This can
be modeled as a damping term, which increases the
effective value of ν [14]. Because of this the value of
ν is to some extent uncertain.

Thus, for the Kleeorin-Ruzmaikin model, given
by equations (3)-(5), the linear instability condition
is also |D| ≡ |αhD0| > 2. However, in this case the
profile of the periodic solutions is not sinusoidal, and
depends on the initial conditions, A0 and B0. For
higher initial values the amplitude of the nonlinear
oscillations in the stationary state is higher. However,
the shapes of the oscillation profiles are similar.

Figure 3 illustrates solutions for the model of
Kleeorin-Ruzmaikin, and the corresponding variations
of the sunspot number for different initial conditions.
As mentioned, changes of initial values for magnetic
field components A0 and B0 leads to very similar pro-
files. In high amplitude cases, dual peaks may ap-

pear in the variations of the vector potential, A, of
the poloidal field. The evolution of the magnetic he-
licity represents a relatively smooth growth followed
by a sharp decay. The helicity has maxima when
the toroidal field is zero. In these calculations the
value of parameter ν, which describes damping rate
of magnetic helicity and depends on the turbulence
spectrum and the dissipation though helicity fluxes,
is of the order of unity. Finally, the variations of the
sunspot number, W , with the amplitude increase are
characterized by higher peaks and shorter rising times
(Fig. 3d). Note that in the sunspot number profile
we can recognize the well-known general properties of
the sunspot number profile with the rapid growth at
the beginning of a cycle and a slow decrease after the
maximum.

With the increase of |αhD0| (|αhD0| > 2) the
profile of magnetic field variations continue to deform
and can become unstable with very steep variations
of the magnetic field. The solution can be stable
again if we enhance the back reaction by increasing the
quenching parameter. We use the following quench-
ing formula for the kinetic part of helicity, αh, [12]
α = αh/(1 + ξB2) + αm. Thus we always have a
possibility for selecting ξ to obtain periodic nonlinear
solutions.

The transition of the periodic to chaotic solutions
occurs when the dynamo number, |αhD0|, increases.
In the transition regime the cycle amplitude becomes
modulated: it slowly increases with time, and then
suddenly and very sharply declines, and then start
growing again [13].

185 190 195
t

-2

-1

1

2

185 190 195
t

-1.5

-1.0

-0.5

0.5

1.0

1.5

B

185 190 195
t

-4

-3

-2

-1

1

m

Α

188 190 192 194 196 198
t

0.5

1.0

1.5

2.0

W

(a) (b)

(c)
(d)

α

Fig. 3 Variations of the magnetic field for the middle
convective zone αhD0 = −2: ν = 1.28, αh =
2.439, D0 = −0.82 for different initial conditions:
B0 = 4i, A0 = −0.01i (dotted curve), B0 = 4i,
A0 = −i (dashed curve) and B0 = 1 + 4i, A0 = −i
(black curve): a) toroidal component, B; b) vector-
potential, A, of the poloidal magnetic field; c) mag-
netic helicity variations; d) evolution of the model
sunspot number.
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Fig. 4 Example of the chaotic solution for: a) toroidal field
B, b) vector-potential A, c) magnetic helicity αm,
d) model sunspot number W and e) the phase por-
trait of the magnetic components.

In the case of significant deviations from the con-
dition of linear stability the solutions become chaotic
for all variables of the dynamical system. Figure 4
shows an example of chaotic variations for the mid-
dle convective zone parameters: ν = 1.28, λ =
1.23 × 10−6, D0 = −0.82, αh = 3.2, ξ = 3.9 × 10−3

for the magnetic field components, the magnetic he-
licity and the sunspot number parameter [13]. In the
chaotic solutions, the peaks of the toroidal magnetic
field, B (Fig. 4a) strongly correlate with the peaks
of the vector-potential, A, and the magnetic helicity,
αm, (Fig. 4b, c). The growth of the toroidal field also
leads to strengthening of the poloidal field and strong
fluctuations of the magnetic helicity.

Now we can see from Figs. 3d and 4d that the
profiles of the model sunspot number variations qual-
itatively describe the mean profile of the solar cy-
cles. The next important characteristic of the solar
cycles is the relationship between the amplitude and
the growth time. Fig. 5 shows this relationship for
some periodical solutions (panel a), four chaotic so-
lutions (panel b) and properties for the real 23 solar
cycles (panel c). In the case of the relationship for the
periodic solutions (panel a) the circles show a sequence
for a fixed value of the kinetic helicity, αh = 2.44
and the dynamo number varying from -7 to -0.82, the
crosses show the case of fixed D0 = −0.82 and vary-
ing αh, from 2.44 to 3. The size of the crosses and
circles is proportional to the corresponding values of
|D0| and αh). The four chaotic solutions shown in
panel b) are obtained for D0 = −0.82 and different
values of the kinetic helicity: αh = 2.8 (black circles),
αh = 3 (empty circles)and αh = 3.2 (stars). The
time scales are non dimensional. The bottom panel
(Fig. 5c) shows the observed amplitude-growth time
properties of the solar cycles of 1755 - 2007. Thus,
all three panels demonstrate that the growth time is
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Fig. 5 Relationships between the amplitude of the model
sunspot number and the growth time for a) periodic
solutions; b) chaotic solutions (for D0 = −0.82 and
different values of the kinetic helicity); and c) for
real solar cycles.

shorter for stronger cycles.

4. Assimilation of Sunspot Data into
the Dynamo Model
Despite the fact that the Kleeorin-Ruzmaikin dy-

namo model reproduces the basic properties of a so-
lar cycle, it has significant deviations from the actual
sunspot data. This problem is related to inaccura-
cies of the model, which contains various assumptions
and approximations, unknown initial conditions, and
errors of the observational data. Data assimilation
methods allow us to use the observed information and
obtain the best estimate of the model physical state.

In the case of non-linear systems the Ensemble
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Fig. 6 Results of assimilation for the known observational data of the annual sunspot number (circles). The grey curve
shown the reference solution (without assimilation analysis), and the black curve shows the EnKF estimate of the
sunspot number variations, obtained from the data and Kleeorin-Ruzmaikin dynamo model. Numbers from 1 to 23
are the conventional numbering of the sunspot cycles.

Kalman Filter (EnKF) is shown to be an effective
method for data assimilation [15]. This method is
based on the standard Kalman Filter and includes a
statistical analysis of ensembles of possible solutions.
The main difference of the EnKF from the standard
Kalman Filter is in using for the analysis an ensemble
of possible states of a system, which can be generated
by the Monte Carlo simulations.

Figure 6 shows the result of assimilation of the
annual sunspot number data (circles) into Kleeorin-
Ruzmaikin model by the EnKF method. For compar-
ison the figure shows an exact solution of the model
(grey curve) without assimilation and the best esti-
mate of the sunspot number variations (black curve)
obtained by the EnKF method from the dynamo
model calculations. It reproduces well the observa-
tional data (Fig. 1). The errors are estimated by
modeling the model uncertainties by a random forcing
function and assuming a 14% error in the data. This
result provides a basis for developing physics-based
methods of predicting the solar activity cycles.

5. Conclusion
In the mean-field theory the dynamo process is

described in terms of plasma helicity, which has two
components: kinetic, caused by helical motions, and
magnetic. The dynamo theories often include only
the kinetic part. However, it has been suggested that
the magnetic helicity may also play a significant role.
Using a low-order dynamical system approach we ex-
amine the influence of the kinetic and magnetic he-
licities on the non-linear fluctuations of the dynamo-
generated magnetic field in the conditions of the solar
plasma, and compare these with the sunspot num-
ber variations observed during the solar 11-year cycles.

For comparison, we consider the classical Parker’s dy-
namo model [1] and the Kleeorin-Ruzmaikin model [2].
We find that the Parker’s model (which does not take
into account the magnetic helicity) does not allow re-
producing the typical behavior of the sunspot num-
ber with a fast growth and slow decay or obtaining a
chaotic solution, even in strong nonlinear regimes.

The analysis of the Kleeorin-Ruzmaikin model,
which describes the evolution of the magnetic helic-
ity based on the balance between the large-scale and
turbulent magnetic helicities, shows the existence of
nonlinear periodic and chaotic solutions for conditions
of the solar convective zone. For this model we ob-
tained the profiles of the sunspot number variations,
which qualitatively reproduce the typical profile of the
solar cycles. Also, the Kleeorin-Ruzmaikin model has
been used for assimilating the sunspot data by apply-
ing the Ensemble Kalman Filter method. The initial
results show that this assimilation method works for
this model reasonably well, and can be used for pre-
dicting solar sunspot cycles.

This work was supported by the Center for Turbu-
lence Research (Stanford) and the International Space
Science Institute (Bern).
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