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The methods developed by the authors are applied to a few important reductions of BBGKY hierarchy,
namely, various examples of Vlasov-like systems important both for fusion modeling and for particular physical
problems related to plasma/beam physics. As in companion paper [1] devoted to the general situation of kinetic
hierarchies, we concentrate mostly on the phenomena of localization and pattern formation to create a realistic
model for fusion state in plasma.
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1. Vlasov-Poisson System. Description
In this paper we consider the applications of our ap-

proach based on variationalmultiresolution technique [1,2]
to the systems with collective type behaviour described by
some forms of Vlasov-Poisson/Maxwell equations, some
important reduction of general BBGKY hierarchy [3,4]. It
based on general ideology presented in companion paper
[1], devoted to the general case of kinetic hierarchies. Such
approachmay be useful in all models in which it is possible
and reasonable to reduce all complicated problems related
to statistical distributions to the problems described by the
systems of (non)linear ordinary/partial differential/integral
equations with or without some (functional) constraints.
E.g., in periodic accelerators and transport systems at the
high beam currents and charge densities the effects of the
intense self-fields, which are produced by the beam space
charge and currents, determinine (possible) equilibrium
states, stability and transport properties according to un-
derlying nonlinear dynamics. The dynamics of such space-
charge dominated high brightness beam systems can pro-
vide the understanding of the instability phenomena such
as emittance growth, mismatch, halo formation related to
the complicated behaviour of underlying hidden nonlinear
modes outside of perturbative tori-like KAM regions [4].
Our analysis based on the variational-wavelet approach al-
lows to consider polynomial and rational type of nonlinear-
ities. In some sense in this particular case this approach is
direct generalization of traditional nonlinear δF approach
[4] in which weighted Klimontovich representation

δ f j = a j

N j�
i=1

w jiδ(x − x ji)δ(p − p ji) (1)

or self-similar decompostion like

δn j = b j

N j�
i=1

w jis(x − x ji), (2)

where s(x − x ji) is a shape function of distributing par-
ticles on the grids in configuration space, are replaced
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by powerful technique of local nonlinear harmonic anal-
ysis, based on representation theory of underlying symme-
tries of functional space such as affine or more general.
The solution has the multiscale/multiresolution decompo-
sition via nonlinear high-localized eigenmodes, which cor-
responds to the full multiresolution expansion in all un-
derlying time/phase space scales. Starting from Vlasov-
Poisson equations, we consider the approach based on
multiscale variational-wavelet formulation. We give the
explicit representation for all dynamical variables in the
base of compactly supported wavelets or nonlinear eigen-
modes. Our solutions are parametrized by solutions of a
number of reduced algebraical problems, one from which
is nonlinear with the same degree of nonlinearity as ini-
tial problem and the others are the linear problems which
correspond to the particular method of calculations inside
concrete wavelet scheme. Because our approach started
from variational formulation we can control evolution of
instability on the pure algebraical level of reduced alge-
braical system of equations. This helps to control sta-
bility/unstability scenario of evolution in parameter space
on pure algebraical level. In all these models numerical
modeling demonstrates the appearance of coherent high-
localized structures and as a result the (meta)stable patterns
formation or unstable chaotic behaviour. Analysis based
on the non-linear Vlasov equations leads to more clear un-
derstanding of collective effects and nonlinear beam dy-
namics of high intensity beam propagation in periodic-
focusing and uniform-focusing transport systems. We con-
sider the following form of equations [4]:

�
∂

∂s
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∂

∂x
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∂

∂y
−
�
kx(s)x +

∂ψ

∂x

�
∂

∂px
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∂ψ
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�
∂

∂py
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fb(x, y, px, py, s) = 0,

�
∂2
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∂y2

�
ψ = −2πKb
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�
dpxdpy fb,

�
dxdydpxdpy fb = Nb. (3)
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The corresponding Hamiltonian for transverse single-
particle motion is given by

H(x, y, px, py, s) =
1
2
(p2

x + p2
y) +

1
2
[kx(s)x2

+ky(s)y2] + H1(x, y, px, py, s) + ψ(x, y, s), (4)

where H1 is nonlinear (polynomial/rational) part of the
full Hamiltonian and corresponding characteristic equa-
tions are:

d2x
ds2 + kx(s)x +

∂

∂x
ψ(x, y, s) = 0,

d2y
ds2 + ky(s)y +

∂

∂y
ψ(x, y, s) = 0. (5)

2. Multiscale Representation
We obtain our multiscale/multiresolution represen-

tations for solutions of these equations via variational-
wavelet approach. We decompose the solutions as

fb(s, x, y, px, py) =
∞�

i=ic

⊕δi f (s, x, y, px, py),

ψ(s, x, y) =
∞�

j= jc

⊕δ jψ(s, x, y),

x(s) =
∞�

k=kc

⊕δk x(s), y(s) =
∞�
�=�c

⊕δ�y(s), (6)

where set

(ic, jc, kc, �c) (7)

corresponds to the coarsest level of resolution c in the full
multiresolution decomposition [5]

Vc ⊂ Vc+1 ⊂ Vc+2 ⊂ . . . (8)

Introducing detail space W j as the orthonormal comple-
ment of V j with respect to

V j+1 : V j+1 = V j

�
W j, (9)

we have for

f , ψ, x, y ⊂ L2(R) (10)

L2(R) = Vc

∞�
j=c

W j. (11)

In some sense it is some generalization of the old δF
approach [4]. Let L be an arbitrary (non) linear differen-
tial/integral operator with matrix dimension d, which acts
on some set of functions

Ψ ≡ Ψ(s, x) =
�
Ψ1(s, x), . . . ,Ψd(s, x)

�
,

s, x ∈ Ω ⊂ Rn+1 (12)

from L2(Ω):

LΨ ≡ L(R(s, x), s, x)Ψ(s, x) = 0, (13)

where x are the generalized space coordinates or phase
space coordinates, and s is ”time” coordinate. After some
anzatzes [2] the main reduced problem may be formulated
as the system of ordinary differential equations

Qi( f )
d fi
ds
= Pi( f , s); f = ( f1, ..., fn), (14)

i = 1, . . . , n; max
i

deg Pi = p; max
i

deg Qi = q

or a set of such systems corresponding to each indepen-
dent coordinate in phase space. They have the fixed initial
(or boundary) conditions fi(0), where Pi,Qi are not more
than polynomial functions of dynamical variables f j and
have arbitrary dependence on time. As result we have the
following reduced algebraical system of equations on the
set of unknown coefficients λk

i of localized eigenmode ex-
pansion:

L(Qi j, λ, αI) = M(Pi j, λ, βJ), (15)

where operators L and M are algebraization of RHS and
LHS of initial problem and are unknowns of reduced sys-
tem of algebraical equations (RSAE). After solution of
RSAE (15) we determine the coefficients of wavelet expan-
sion and therefore obtain the solution of our initial prob-
lem. It should be noted that if we consider only truncated
expansion with N terms then we have the system of N × n
algebraical equations with degree

� = max{p, q} (16)

and the degree of this algebraical system coincides with de-
gree of initial differential system. So, we have the solution
of the initial nonlinear (rational) problem in the form

fi(s) = fi(0) +
N�

k=1

λk
i fk(s), (17)

where coefficients λk
i are the roots of the corresponding

reduced algebraical (polynomial) problem RSAE. Con-
sequently, we have a parametrization of solution of ini-
tial problem by the solution of reduced algebraical prob-
lem. The obtained solutions are given in this form, where
fk(t) are basis functions obtained via multiresolution ex-
pansions and represented by some compactly supported
wavelets. As a result the solution of equations has the fol-
lowing multiscale/multiresolution decomposition via non-
linear high-localized eigenmodes, which corresponds to
the full multiresolution expansion in all underlying scales
starting from coarsest one. For

x = (x, y, px, py) (18)

we will have

Ψ(s, x) =
�

(i, j)∈Z2

ai jUi ⊗ V j(s, x), (19)

V j(s) = V j,slow
N (s) +

�
l≥N

V j
l (ωls), ωl ∼ 2l

Ui(x) = Ui,slow
M (x) +

�
m≥M

Ui
m(kmx), km ∼ 2m,
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These formulae give us expansion into the slow part Ψslow
N,M

and fast oscillating parts for arbitrary N,M. So, we may
move from coarse scales of resolution to the finest one
for obtaining more detailed information about our dynam-
ical process. The first terms in the RHS correspond on
the global level of function space decomposition to resolu-
tion space and the second ones to detail space. It should be
noted that such representations give the best possible local-
ization properties in the corresponding (phase)space/time
coordinates. In contrast with other approaches this for-
mulae do not use perturbation technique or linearization
procedures. So, by using wavelet bases with their good
(phase) space/time localization properties we can describe
high-localized (coherent) structures in spatially-extended
stochastic systems with collective behaviour. Modeling
demonstrates the appearance of (meta)stable patterns for-
mation from high-localized coherent structures (funda-
mental eigenmodes, Fig. 1) or chaotic behaviour. On Fig.
2 we present contribution to the full expansion from coars-
est level of decomposition. Fig. 3 shows the representa-
tions for full solutions, constructed from the first six scales
(dilations) and demonstrates (meta) stable localized pat-
tern formation in comparison with chaotic-like behaviour
(Fig. 4) outside of KAM region. We can control the type of
behaviour on the level of reduced algebraical system (15)
which plays the role of Generalized Dispersion Relations
(GDR).

3. Rate/RMS Models. Description
In this part we consider the applications of our tech-

nique based on the methods of local nonlinear harmonic
analysis to nonlinear rms/rate equations for averaged quan-
tities related to some particular case of nonlinear Vlasov–
Maxwell equations [4]. We consider electrostatic approx-
imation for a thin beam. This approximation is a partic-
ular important case of the general reduction from statisti-
cal collective description based on Vlasov–Maxwell equa-
tions to a finite number of ordinary differential equations
for the second moments related quantities (beam radius
and emittance). In our case these reduced rms/rate equa-
tions also contain some distribution averaged quantities be-
sides the second moments, e.g. self-field energy of the
beam particles. Such model is very efficient for analysis
of many problems related to periodic focusing accelera-
tors, e.g. heavy ion fusion and tritium production. So,
we are interested in the understanding of collective proper-
ties, nonlinear dynamics and transport processes of intense
non-neutral beams propagating through a periodic focus-
ing field. Our approach allows to consider rational type
of nonlinearities in rms/rate dynamical equations contain-
ing statistically averaged quantities also. The solution has
the multiscale/multiresolution decomposition via nonlin-
ear high-localized eigenmodes (Fig. 1), which corresponds
to the full multiresolution expansion in all underlying in-
ternal hidden scales. We may move from coarse scales of

resolution to the finest one to obtain more detailed infor-
mation about our dynamical process. In this way we give
contribution to our full solution from each scale of resolu-
tion or each time/space scale or from each nonlinear eigen-
mode. Starting from some electrostatic approximation of
Vlasov-Maxwell system and rms/rate dynamical models
we consider the approach based on variational-wavelet for-
mulation. We give explicit representation for all dynamical
variables in the bases of compactly supported wavelets or
nonlinear eigenmodes. Our solutions are parametrized by
the solutions of a number of reduced standard algebraical
problems like GDR mentioned above.

4. Rate Equations
In thin-beam approximation with negligibly small

spread in axial momentum for beam particles we have in
Larmor frame the following electrostatic approximation
for Vlasov–Maxwell equations [4]:

∂F
∂s
+ x�
∂F
∂x
+ y�
∂F
∂y
−

�
k(s)x +

∂ψ

∂x

�
∂F
∂x�

−

�
k(s)y +

∂ψ

∂y

�
∂F
∂y�
= 0, (20)

�
∂2

∂x2 +
∂2

∂y2

�
ψ = −

2πK
N

�
dx�dy�F, (21)

where ψ(x, y, s) is normalized electrostatic potential and
F(x, y, x�, y�, s) is distribution function in transverse phase
space (x, y, x�, y�, s) with normalization

N =
�
dxdyn, n(x, y, s) =

�
dx�dy�F, (22)

where K is self-field perveance which measures self-field
intensity. Introducing self-field energy

E(s) =
1
4πK

�
dxdy|∂2ψ/∂x2 + ∂2ψ/∂y2| (23)

we have obvious equations for root-mean-square beam ra-
dius R(s)

R(s) =< x2 + y2 >1/2 (24)

and unnormalized beam emittance

ε2(s) = 4(< x�2 + y�2 >< x2 + y2 >

− < xx� − yy� >), (25)

which appear after averaging second-moments quantities
regarding distribution function F [4]:

d2R(s)
ds2 +

�
k(s)R(s) −

K(1 + Δ)
2R2(s)

�
R(s) =

ε2(s)
4R3(s)

dε2(s)
ds

+ 8R2(s)
�dR
ds

K(1 + Δ)
2R(s)

−
dE(s)
ds

�
= 0, (26)

where the term

K(1 + Δ)/2 (27)
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may be fixed in some interesting cases, but generally we
have it only as average

K(1 + Δ)/2 = − < x∂ψ/∂x + y∂ψ/∂y > (28)

w.r.t. distribution F. Anyway, the rate equations repre-
sent reasonable reductions for the second-moments related
quantities from the full nonlinear Vlasov-Poisson system.
For trivial postulated distributions Davidson e.a. [4] found
additional reductions. For KV distribution (step–function
density) the second rate equation is trivial,

ε(s) = const (29)

and we have only one nontrivial rate equation for rms beam
radius. The fixed-shape density profile ansatz for axisym-
metric distributions also leads to similar situation: emit-
tance conservation and the same envelope equation with
two shifted constants only.

5. Multiscale Representation
Accordingly to our approach which allows us to find

exact solutions as for Vlasov- like systems as for rms-like
systems we need not to fix particular case of distribution
function F(x, y, x�, y�, s). Our consideration is based on the
following multiscale N-mode anzatz:

FN(x, y, x�, y�, s) =
N�

i1,...,i5=1

ai1,...,i5

5�
k=1

Aik (x, y, x
�, y�, s), (30)

ψN(x, y, s) =
N�

j1, j2, j3=1

b j1, j2, j3

3�
k=1

B jk(x, y, s). (31)

These formulae provide multiresolution representation for
variational solutions of our system. Each high-localized
mode/harmonics A j(s) corresponds to level j of resolution
from the whole underlying infinite scale of spaces:

. . .V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ . . . , (32)

where the closed subspace V j( j ∈ Z) corresponds to level j
of resolution, or to scale j. The construction of tensor alge-
bra based on the multiscale bases [5] is considered in [2].
We will consider rate equations as the following operator
equation. Let L, P, Q be an arbitrary nonlinear (rational in
dynamical variables) first-order matrix differential opera-
tors with matrix dimension (d = 4 in our case) correspond-
ing to the system of equations, which act on some set of
functions

Ψ ≡ Ψ(s) =
�
Ψ1(s), . . . ,Ψd(s)

�
, s ∈ Ω ⊂ R (33)

from L2(Ω):

Q(R, s)Ψ(s) = P(R, s)Ψ(s) (34)

or

LΨ ≡ L(R, s)Ψ(s) = 0 (35)

where

R ≡ R(s, ∂/∂s,Ψ). (36)

Let us consider now the N mode approximation for
solution as the following expansion in some high-localized
wavelet-like basis:

Ψ
N(s) =

N�
r=1

aN
r φr(s). (37)

We will determine the coefficients of expansion from the
following variational condition:

LN
k ≡

�
(LΨN)φk(s)ds = 0 (38)

We have exactly dN algebraical equations for dN un-
knowns ar. So, variational approach reduced the initial
problem to the problem of solution of functional equations
at the first stage and some algebraical problems at the sec-
ond stage. As a result we have the following reduced alge-
braical system of equations (RSAE) on the set of unknown
coefficients aN

i of the expansion:

H(Qi j, aN
i , αI) = M(Pi j, aN

i , βJ), (39)

where operators H and M are algebraization of RHS and
LHS of initial problem. Qi j (Pi j) are the coefficients of
LHS (RHS) of the initial system of differential equations
and as consequence are coefficients of RSAE (39).

I = (i1, ..., iq+2), J = ( j1, ..., jp+1) (40)

are multiindices, by means of which are labelled αI and βI ,
the other coefficients of RSAE:

βJ = {β j1 ... jp+1} =

� �
1≤ jk≤p+1

φ jk , (41)

where p is the degree of polynomial operator

αI = {αi1 ...αiq+2 } =
�

i1,...,iq+2

�
φi1 ...φ̇is ...φiq+2 , (42)

where q is the degree of polynomial operator Q,

i� = (1, ..., q+ 2), φ̇is = dφis/ds. (43)

We may extend our approach to the case when we have
additional constraints on the set of our dynamical variables

Ψ = {R, ε} (44)

and additional averaged terms also. In this case by using
the method of Lagrangian multipliers we may again apply
the same approach but for the extended set of variables.
As a result we obtain the expanded system of algebraical
equations analogous to our system. Then, after reduction
we can again extract from its solution the coefficients of
the expansion. It should be noted that if we consider only
truncated expansion with N terms then we have the system
of N × d algebraical equations with the degree

� = max{p, q} (45)
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and the degree of this algebraical system coincides with
the degree of the initial system. So, after all we have the
solution of the initial nonlinear (rational) problem in the
form

RN(s) = R(0) +
N�

k=1

aN
k φk(s),

εN(s) = ε(0) +
N�

k=1

bN
k φk(s), (46)

where coefficients aN
k , bN

k are the roots of the correspond-
ing reduced algebraical (polynomial) problemRSAE. Con-
sequently, we have a parametrization of the solution of the
initial problem by solution of reduced algebraical prob-
lem. The problem of computations of coefficients αI , βJ

of reduced algebraical system may be explicitly solved in
wavelet framework via various approaches [5]. The ob-
tained solutions are given in the form, where φk(s) are
proper wavelet bases functions (e.g., periodic or bound-
ary). It should be noted that such representations give the
best possible localization properties in the corresponding
(phase)space/time coordinates. In contrast with different
approaches these formulae do not use perturbation tech-
nique or linearization procedures and represent dynamics
via generalized nonlinear localized eigenmodes expansion.
Our N mode construction gives the following general mul-
tiscale representation:

R(s) = Rslow
N (s) +

�
i≥N

Ri(ωi s), ωi ∼ 2i,

ε(s) = εslow
N (s) +

�
j≥N

ε j(ω js), ω j ∼ 2 j, (47)

where Ri(s), ε j(s) are represented by some family of
(nonlinear) eigenmodes and gives the full multires-
olution/multiscale representation in the high-localized
wavelet bases. As a result we can construct various un-
stable (Fig. 4) or (meta) stable (non-gaussian!) patterns
(Fig. 3, Fig. 7) from high-localized (coherent) fundamen-
tal modes (Fig. 1) in complicated stochastic systems with
complex collective behaviour. Definitely, partition(s) as
generic dynamical variable(s) cannot be postulated (e.g.,
as some sort of gaussians or something else fixed apriori)
but need to be computed as solutions of proper stochastic
dynamical evolution model. Only after that, it is possible
to calculate other dynamical quantities and physically in-
teresting averages.

6. Towards Energy Confinement
Analysis and modeling considered in this and com-

panion paper [1] describes, in principle, a scenario for the
generation of controllable localized (meta) stable fusion-
like state (Fig.3 and Fig.7). Definitely, chaotic-like un-
stable partitions/states (Fig. 4) dominate during non-
equilibrium evolution. It means that (possible) localized
(meta) stable partitions have measure equal to zero a.e. on

the full space of hierarchy of partitions defined on a do-
main of the definition in the whole phase space. Never-
theless, our Generalized Dispersion Relations, like (15) or
(39), give some chance to build the controllable localized
state (Fig. 7) starting from initial chaotic- like partition
(Fig. 4) via process of controllable self-organization. Fig-
ures 5 and 6 demonstrate two subsequent steps towards
creation important fusion or confinement state, Fig. 7,
which can be characterized by the presence of a few im-
portant physical modes only in contrast with the opposite,
chaotic-like state, described by infinite number of con-
tributed modes. Of course, such confinement states, char-
acterized by zero measure and minimum entropy (we name
them waveletons), can be only metastable. But these long-
living fluctuations can and must be very important from
the practical point of view, because the averaged time of
existence of such states may be even more than needed for
practical realization, e.g., in controllable fusion processes.
Further details will be considered elsewhere.

Fig. 1 Localized modes.
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Fig. 2 Localized two-dimensional partition.
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Fig. 3 Metastable pattern.
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Fig. 4 Chaotic pattern.
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Fig. 5 Self-organization, step 1: towards confinement.
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Fig. 6 Self-organization, step 2: towards confinement.
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Fig. 7 Localized pattern(waveleton): energy confinement state.
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