Field line tying and magnetic shear effects of the vertical magnetic field on low frequency density fluctuations in CPD

Tomofumi RYOUKAI¹⁾, Hideki ZUSHI²⁾, Rajendraprasad BHATTACHARYAY¹⁾, Hiroshi IDEI²⁾, Tomokazu YOSHINAGA³⁾, CPD Group1²⁾, Tomohiro MORISAKI³⁾, Takashi MUTOH³⁾, Shin KUBO³⁾, Kazuaki NAGASAKI⁴⁾

1)Interdisciplinary Graduate School of Engineering Science, Kyushu University Kasuga, Fukuoka 816-8580, Japan, 2)RIAM, Kyushu University, 3)NIFS, 322-6 Oroshi, Toki, Gifu 50-5292, 4)Kyoto University Kyoto

(Received: 19 September 2008 / Accepted: 25 February 2009)

The two dimensional structure of density fluctuations is examined in a microwave produced annulus plasma at $B_t = 0.3$ T. In simple torus configuration low frequency coherent waves are found to be unstable and the density fluctuation level reaches to 30-40 %. By applying B_z field (50 G) it should be noted that the fluctuation level is reduced by 80 % and no coherent modes are found. The current ramp-up condition is discussed from a view point of the improved mode conversion of incident cyclotron waves with reduced fluctuations.

Keywords: non-inductive current drive, low frequency density fluctuations, EBW, ECW, Li sheet beam

1. Introduction

In the spherical tokamak device CPD (Compact Plasma wall interaction experimental Device), the non-inductive current drive experiments have been performed in hydrogen plasma using electron cyclotron waves [1]. At 1 kW of the rf power at 8.2 GHz an annulus plasma is initially produced near the resonance layer R_{res} (~0.16 -0.19 m) and is extended radially up to ~ 0.1 m. With increasing the rf power the current I_n ramps up and via a current jump phenomenon closed magnetic surfaces are formed [1, 2]. Relatively higher vertical field Bz was found to be required to ramp up current even in the initial phase. This has been observed in CDX-U[3] and LATE[4]. Since both extraordinary (X) and ordinary (O) waves are lunched from the low field side (LFS), they cannot access to the electron cyclotron resonance (ECR) beyond the cutoff layers (right-hand and plasma) without mode conversion to the electron Bernstein wave (B) [5, 6]. The conversion efficiency η_{XB} from X to B or transmission efficiency T_{OX} from O to X mode at the cutoff layer strongly depends on the density scale length $L_n = n_e / |\partial n_e / \partial r|$. In order to achieve high η_{XB} the short L_n of ~ 5 mm is required [7]. However, it has been

Fig.1 $T_{\rm OX}$ v.s. L_n at f=8.2 GHz. \widetilde{n}_e/n_e =1%(solid), 5%(dot-dashed), 10%(dashed), and 20%(dotted). $\lambda_{\rm pol}$ =2 cm, and parallel refractive index N_{||}=0.7.

well known that the steep density gradient ∇n_e drives density fluctuations in the toroidal device. Under such situations, since the conversion layer becomes rough and wavy due to fluctuations, T_{OX} is reduced at high \tilde{n}_e/n_e and high poloidal wave length λ_{pol} [8]. Using a simple spectrum of the poloidal refractive index T_{OX} is calculated as a function of L_n for various \tilde{n}_e/n_e as shown in Fig.1. Since $\tilde{n}_e/n_e > 30-40$ % and wave length > 25mm are observed in the annulus plasma, these fluctuations must be stabilized from a view point of higher mode conversion efficiency which is required to heat plasma and drive plasma current. Although both drift and flute modes driven by a steep ∇n_e with $L_n = 20-60$ mm have been studied in a simple torus BETA using 2.45GHz microwave, the effects of these waves on the X-B conversion have not been studied [9]. In this report we present the details of characteristics of the density fluctuations in the annulus plasma, and study the stabilization (field line tying [10] and magnetic shear [11]) effects of vertical field B_z on them in the weak mirror configuration.

2. Experimental Arrangement

2.1. CPD device and diagnostics

CPD is a spherical tokamak device whose diameter as well as height is ~ 1.2 m. The diameter of the center stack is 0.255 m. Mirror configurations (decay index ~ 0.046 , $B_z \sim 40$ G at R=0.2 m) are used to ramp-up Ip, which is measured with the Rogowski coil installed inside the CPD chamber.

A thermal Li sheet beam is injected from the bottom of the chamber and the 2D image of LiI (670.8 nm) is used to analyze the density profile [2,12,13]. The line averaged density is measured along the vertical chord at R=0.3 m by an interferometer at 140 GHz. The scattered microwave component at the cutoff layer is monitored around the torus.

The X-wave reflected from the cutoff layer is measured with a reflectmeter. T_e is measured by a scanning Langmür probe.

2.2. Li beam fluctuation spectroscopy (LBFS)

The LBFS system measures local, long wavelength $(k_\perp \rho_s < 1)$ density fluctuations by observing LiI. Fluctuations in LiI are proportional to the local density fluctuations, $\widetilde{n}_e/n_e = \widetilde{I}_{Li}/I_{Li}$. The radial resolution is ~ 5 mm ϕ . The LBFS system consists of 50 spatial points, connected to photomultiplier tubes via a fiber bundle. The image area is 50 mm $\times 25$ mm. The sampling frequency of ADC is 300 kHz.

3. Measurement of Density Fluctuations

Fig.2 Density profile at z=-80 mm. R_{res}=164 mm.

3.1. Fluctuations in Annulus plasma

Characteristics of density fluctuations in initially produced annulus plasma are investigated. Since the plasma is vertically extended, the LiI intensity drops sharply for R< R_{res} , where flute modes are expected to stable due to $\nabla n \cdot \nabla B < 0$, but it decays gradually for R>R_{res}, where flute modes become unstable due to $\nabla n \cdot \nabla B > 0$. The

Fig.3 \tilde{n}_e/n_e vs. R. Relative amplitude gradually increases along the major radius.

contour of the density aligns along the vertical direction [2] and the radial profile at Z=-80 mm, as shown in Fig.2. According to the density profile with $L_n \sim 40$ mm, R_{cutoff} and R_{UHR} are calculated to be 0.23 m and 0.19 m, respectively. Since this cutoff layer extends vertically, X-mode from LFS cannot access the resonance layer. Both flute and drift modes are also unstable in this region. Figure 3 shows a radial distribution of the relative

Fig. 4 The auto power (a), and γ_R^2 and γ_Z^2 spectra (b).

fluctuation amplitude. The amplitude is 25-50 % around the expected mode conversion layer, which becomes rough and wavy due to fluctuations. The auto power spectrum S_{xx} and square coherency $\gamma_R{}^2$ ($\gamma_Z{}^2$) at two points separated by horizontal distance of $\Delta R{\sim}$ 2.5 cm (vertical distance of $\Delta Z \sim$ 1.25 cm) are analyzed by fast Fourie transform FFT, as shown in Fig.4. The time window is \sim 20 ms and moving average at every 3.4 ms (1024 data

Fig.5 Radial profiles of S_{xx} at f=1.1 and 4.1 kHz.

points) is used. The frequency resolution is 0.3 kHz. S_{xx} shows a broadband spectrum peaking at $f \sim 1.1$ kHz and decaying to ~ 10 kHz as f^{-1} . At $f \sim 1.1$ kHz both γ_R^{-2} and γ_Z^{-2} are ≥ 0.7 , but, at f = 4.1 kHz γ_R^{-2} is reduced < 0.3 while $\gamma_Z^{-2} > 0.8$. The radial profiles of S_{xx} at f = 1.1 and 4.1 kHz are shown in Fig. 5. The former shows a broad peak at 0.19 m and sharply decreases in the LFS. The latter also peaks at $R \sim 0.2$ m and decays at both sides. Figure 6 shows that a mode at 4.1 kHz is extended coherent mode and a mode at 4.1 kHz is a relatively localized one. The radial correlation length for the 1.1 kHz mode is

Fig.6 Radial profiles of γ_R^2 at 1.1 (a) and 4.1 kHz (b).

Fig. 7 The cross phase θ_R and θ_Z spectra (a), radial profiles of θ_R at f=1.1 and 4.1 kHz.

considered to be longer than the viewing radial length of 0.06 m, and that for 4.1 kHz mode is < 0.03 m. However, the vertical profiles of γ_Z^2 shows a high coherence > 0.9, suggesting that both coherent modes are extended along the vertical direction. These modes are, therefore, expected to be aligned along the contour of the density. The cross phases θ_R and θ_Z at two points separated by $\Delta R \sim 2.5$ cm ($\Delta Z \sim 1.25$ cm) are also shown in Fig.7. The θ_R spectrum rapidly deviates in the lower frequency range because the mode at 4.1 kHz is localized at $R\sim0.2$ m \pm $0.02\ m,$ on the other hand θ_Z is remained around zero. These correspond to γ_R^2 and γ_Z^2 spectra in Fig. 4 (b). The mode at 1.1 kHz propagates along the major radius with a phase velocity of ~ 1 km/s, as shown in Fig. 7(b). Since the variation in θ_Z is within \pm 5 deg at both frequencies, the wave number k_z along the vertical direction is ~ 0.01 cm⁻¹.

3.2. Stabilization in weak mirror configuration

As mention in §1, the necessary condition for current ramp-up is pre-applied vertical field, which is relatively higher from a view point of equilibrium. The reason why this condition is required has been partially studied as the uni-directional Pfirsch-Schlüter current along the inclined

Fig.8 Radial profiles of LiI at z=-50 mm below the equator at $B_z=15-50$ G. The dotted line corresponds to the resonance layer.

magnetic field or toroidal precession current due to the deeply trapped particles created by ECW[3,4]. However, the effects of density fluctuations have been never

considered. In this section how the B_z affects the density fluctuations will be presented.

In Fig. 8 the radial profiles of LiI images at various B_z values, indicating that B_z (< 50 G) does not affect intensity profiles, namely the 2D structures of density. Since the effect of B_z on n_e (R,z) is insignificant, the driven force (∇ n) for the density fluctuations is also unchanged. However, it should be noted that the relative fluctuation amplitude decreases with increasing B_z , as shown in Fig. 9.

Fig. 9 \widetilde{n}_e/n_e vs. R. Two profiles taken at B_z=8 and 50 G are shown

In this experiment B_z was swept in step like manner for each 30 ms. Since resonance position is R_{res} =0.19 m, the larger \widetilde{n}_e/n_e might be driven by the steeper density gradient for $R < R_{res}$.

Although the reduction of relative amplitude is ~ 0.8 by with B_z =50 G at B_t =0.3T, the characteristics of the fluctuations are drastically changed. Auto power and square coherency spectra are shown in Fig.10. The integrated power in the low frequency range changes by a similar factor compared with that in the relative amplitude. The coherency and its spatial structure are quite drastically

Fig. 10 The auto power (a), and square coherency γ^2 spectra (b) at various B_z .

changed. Although coherent low frequency waves are unstable at B_z =0 G, both coherencies between two horizontally and vertically separated points are much

reduced as B_z exceeds a certain value.

Figure 11 shows the stabilization effects of Bz on the

Fig. 11 Bz dependence on \tilde{n}_e/n_e density fluctuation amplitude. Usually current ramp-up experiments have been done at relatively higher Bz value in a week mirror configuration. According to result in Fig. 1 this stabilization effect is considered to be necessary for better conversion efficiency to EBW.

4. Discussion

Changes in L_c and pitch angle are shown in Fig. 12. Here the connection length L_c is defined as the wall to wall field length the lines, angle $\theta = \tan^{-1}(B_z/B_t)$. Since B_z is varied up to 50 G, L_c becomes shorter at higher B_z . For $R < R_{res}$ the maximum of L_c is bounded by the case at B_z=15 G and sharply decays towards the CS. On the other hand, it reduces gradually for $R > R_{res}$. In the region of interest L_c varies from 200 m to 70 m as Bz increases. Thus, stabilization effects of field line tying can be possible. Since the decay index of Bz is small and the radial variation of Bz is small, the magnetic shear length $L_{\rm s} = \theta/(d\theta/dR)$, is an order of 0.2 m on the mid plane

Fig.12 (a) The connection length L_c and (b) pitch angle θ_{pitch} for various B_z . The dotted line indicates the resonance layer.

at $R=R_{res}$ and it increases monotonically along R. Since L_s/L_n is an order of 5-10, the magnetic shear effects are also expected, as shown in Fig. 13.

Fig. 13 The relative amplitude vs. $L_{\rm c}$ (a) and $L_{\rm s}$ (b) **5. Conclusion**

The 2 D structure of density fluctuations has been measured with LBFS in annulus rf plasma which has been produced by ECR. The equi-density contour is observed to be aligned along the vertical direction and coherent waves are found to be excited in the low frequency range (1-10 kHz). It should be noted that the vertical field, which is pre-required for ramp-up plasma current, stabilizes these coherent waves. The relative amplitude is reduced by a factor of 2 and the correlation length is reduced < 5 mm. The line tying and magnetic shear effects seem to play more role in stabilization mechanisms.

References

- [1] T. Yoshinaga, et al., 22nd IAEA FEC EX/W (2008)
- [2] T. Kikukawa, et al., J. PFR 3, 010 (2008)
- [3] C.B.Forrest, et al., PRL 68 (1992) 3559.
- [4] T. Maekawa T. et al, NF 45 (2005)1439.
- [5] A. K. Ram and S. D. Schultz, POP 7, 4084 (2000)
- [6] E. Mjølhus, J. Plasma Phys. 31, 7 (1984).
- [7] S. Shiraiwa, et al., PRL 96, 185003 (2006).
- [8] H.P. Laqua, et al., PRL 78 (1997) 3467.
- [9] P. K. Sharma et al., PPCF 39 (1997) 1669.
- [10] F.F. Chen et al., Phys. of Fluid 8 (1965) 912.
- [11] F.F. Chen et al., PRL 18 (1967) 639.
- [12] H. Zushi, et al, J. Nucl. Mater. 363, 1429 (2007)
- [13] R.Bhattacharyay, et al, POP 15, 022504 (2008)