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For the purpose of clarifying mechanism of local structure formations in magnetohydrodynamic (MHD)

turbulence, energy transfers among various scales and positions of magnetic/kinetic energies in the course of

roll-up processes of vortices are studied by direct numerical simulations (DNS) and orthonormalwavelet analysis.

Initial shear layers are perturbed by three-dimensional random perturbations, and roll up to form tubular vortices

which are connected to each other by blade structures. The energy transfers in this process is considered to be

modified from that in the neutral fluid turbulence in the presence of large-scale magnetic fields. Information on

scales provided by the wavelet analysis are used to study scale-to-scale energy transfers in the roll-up processes.

The scale-to-scale analysis suggests that large scale flow structures directly excite magnetic fields with various

scales. Energy exchange between the kinetic and magnetic field energies will also be examined from the points

of views of local analysis of scale-to-scale energy transfers.
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1. Introduction
Turbulent motions of plasmas are considered to play

key roles in magnetic confinement system. For example,

the plasma and energy transports across the magnetic field

lines are closely related to turbulence[1]. For a neutral

fluid, turbulent transport of kinetic energy is well known as

“turbulent energy cascade” and its dynamical mechanism

has been intensively investigated (cf.Refs.[2, 3]). In terms

of wavelet analysis, Kishida et al. have found that local

interaction dominates the transfer process[5]. For MHD

fluids, Alexakis et al. have carefully conducted DNS stud-

ies and investigated turbulent energy transfer processes be-

tween the velocity and magnetic fields and between larger

and smaller scales [6] and similar analysis is carried out

for Hall-MHD case[7]. They found that nonlocal interac-

tion is important for the energy supplying process from the

kinetic energy to the magnetic one.

In the present study, we will focus the relation be-

tween motions of some isolated coherent structures and

magnetic induction process under the existence of a uni-

form background magnetic field, which is not treated in

Refs.[6, 7]. For this purpose, wavelet analysis, which cap-

tures the information of spatial scale and position simulta-

neously, is adopted. We use here orthonormal divergence-

free wavelet, which demonstrates clearly that coherent

structures are relevant to the energy transfer process[8].

In the present study we use only the scale information of

wavelets and analyze scale-to-scale energy transfer.

2. Basic equations
Incompressible MHD equations are described as

∂u

∂t
= −(u · ∇)u − ∇p + j × B + ν∇2u, (1)

author’s e-mail: araki@are.ous.ac.jp

∂B

∂t
= ∇ × [u × B] + η∇2B (2)

∇ · u = 0 (3)

where B is the magnetic field (normalized by a represen-

tative value B0), j = ∇ × B is the current (normalized by

B0/L0; L0 is the characteristic length), u is the velocity

(normalized by the Alfvén speed VA = B0/
√
μ0niMi; μ0

is the permeability of vacuum, Mi is the ion mass and ni is

the ion number density, which is assumed to be constant for

simplicity), ν is the viscosity and η is the resistivity (nor-

malized by VAL0), and p is the pressure (normalized by

B2
0
/μ0). The pressure p is given as the solution of the Pois-

son equation which comes from the divergence of eq.(1).

3. Numerical method
A DNS is carried out using pseudospectral method

with 5123 number of grids in physical space, whose system

length is 2π in each direction, and 2/3-dealiasing method

for the mode interaction calculation and using Runge-

Kutta-Gill method for time stepping [4]. The kinematic

viscosity and normalized resistivity are set to ν = η =

0.001. The initial condition is a uniform magnetic field

given by B0 = (0, 0, 0.1) and a pair of shear layers given

by

u =

�
0.33
�
arctan

�32
π
(y − π

4
)
�

− arctan
�32
π
(y − 3π

4
)
�
− 1.54

�
, 0, 0

�

with small isotropic disturbances whose Fourier spectrum

is given by E(k) ∝
�

k

k0

�2
exp

⎡⎢⎢⎢⎢⎢⎣−
�

k

k0

�2⎤⎥⎥⎥⎥⎥⎦. No forcing is in-
troduced during the calculation.

While the DNS is carried out in terms of Fourier
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Fig. 1 Time development of enstrophy and current. In the

present work the amplitudes of quantities are measured in

dimensionless units that are normalized by the constants

given in §2.

modes, the mode interaction analysis is carried out in terms

of wavelet modes. Orthonormal divergence-free wavelets,

which we call “helical wavelets” and denote by ψ̃
j��lσ
(�x, t)

hereafter, are obtained by a unitary transform of complex

helical waves[5]. The velocity and magnetic fields are ex-

panded in helical wavelet modes as follows:

f (�x, t) =
�

j,�,�l,σ

f̃
j��lσ
(�x, t). (4)

where f stands for u or B, f̃
j��lσ
(�x, t) is a helical wavelet

mode which is given by

f̃
j��lσ
(�x, t) := f̃

j��lσ
(t)ψ

j��lσ
(�x), (5)

f̃
j��lσ
(t) :=

�
f (�x, t) · ψ

j��lσ
(�x) d3�x, (6)

and j, �, �l, σ are the indices of helical wavelet. The impli-

cation of indices are summarized in Ref.[8].

4. Numerical result
Time development of the enstrophy and current are

shown in Fig.1. Disturbances are grown gradually and

formation of rolling-up vortices become prominent around

t = 15. About t = 18 and the later time the net current

exceeds the enstrophy. We analyzed mode interactions at

the time t = 16, 18, 20, 22 and show the result of t = 22 in

the following.

Fourier and wavelet scale spectra of the velocity and

magnetic fields at t = 22 is shown in Fig.2 and the enstro-

phy and current density fields are shown in Fig.3. In Fig.2

Fourier kinetic and magnetic energy spectra are drawn si-

multaneously with wavelet ones in order to compare the

amplitude of wavelet spectra and spatial scale of wavelets

with Fourier ones which may be more familiar to the read-

ers.

At this time, the lowest wavenumber Fourier modes,

i.e. large scale flow structures have most of energy and for
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Fig. 2 Fourier and wavelet scale spectra of kinetic and mag-

netic energy. Open and solid symbols denote the kinetic

and magnetic energy spectra, respectively. The abscissa

of each wavelet spectrum is determined by the mean

wavenumber k :=

�� |∇ × f |2d3�x
� � | f |2d3�x where f

stands for u j or B j.

larger wavenumbers the magnetic energy become larger

than the kinetic one. Several strong vortices are developed

around the initial shear layers and current is developed

around the vortices and the shear layers between them. It

is expected that the fields have some characteristic features

of interactions between the velocity and magnetic fields

drived by coherent structures.

4.1 Energy budget in wavelet scale spectra
representation

Taking inner product of Eqs.(1) and (2) with helical

wavelet modes and summation with respect to all the in-

dices but j, which implies spatial scale in physical space,

we obtain energy budget equations with respect to the

wavelet scale spectra

d

dt
E
(u)

j
= Nj + L j + L

(0)

j
+ D j, (7)

d

dt
E
(B)

j
= I j + I

(0)

j
+ R j (8)

where the terms Nj, L j, L
(0)

j
, D j, I j, I

(0)

j
, and R j are the in-

ner product with −(u · ∇)u, (∇ × B) × B, (B0 · ∇)B, ν∇2u,
∇ × (u × B), (B0 · ∇)u, and η∇2B, respectively. The pres-
sure term is vanished because helical wavelet modes are

divergence-free.

The contribution of each term to the energy budget

of kinetic and magnetic fields is shown in Fig.4. Velocity

field losts its energy at the scale with wavelet scale index

j = 1, at which the kinetic energy spectrum has its peak,

and the other scales it acquires energy. On the other hand,

magnetic field acquires energy at all the scales. That is,

the fields are in such a process that the energy is redis-

tributed from the j = 1 mode of the velocity field to the

other wavelet modes of the velocity and magnetic fields as

a whole.
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Fig. 3 Isosurfaces of enstrophy density (top) and current density

(bottom)

The fluid motion is most affected by the nonlinear in-

teraction for larger scales ( j ≤ 5) and Alfvén wave for
smaller scales ( j ≥ 6). As for the contribution of Lorentz
force term to the kinetic energy budget L j, Lorentz force

reduces the kinetic energy at 0 ≤ j ≤ 4 and j = 7. This

implies that the motion of fluid induces magnetic field as

a whole though some small backscatter from magnetic to

kinetic energy is seen at j = 5, 6 and 8.

The energy budget due to the Alfvén waves L
(0)

j
and

I
(0)

j
tend to transport the energy from velocity field to mag-

netic one for larger spatial scales cases ( j ≤ 2). For smaller
scales ( j ≥ 3) the tendency become opposite. This implies
that Alfvén wave suppresses the growth of smaller scales

of the magnetic field. This feature is also seen at the earlier

times t = 16, 18, 20.

4.2 Inter-scale mode interaction between u j

and b j

Next we will see the debit and credit relation between

the kinetic and magnetic scale energy spectra E
(u)

j
and E

(B)

k
.
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Fig. 4 Wavelet spectra of kinetic and magnetic energy budget

equations at the time t = 22; (top) the kinetic energy bud-

get, (bottom) magnetic one. Ordinate of each plot is de-

termined by the modulus of each term and the sign of it

is shown by open (acquiring) or solid (losing) symbols.

For this purpose the mode interaction terms that appear in

the rhs of the energy budget equations (7) and (8) are de-

composed into subcomponents as follows: Nj =
�

k N jk,

L j =
�

k L jk, L
(0)

j
=
�

k L
(0)

jk
, I j =

�
k I jk, I

(0)

j
=
�

k I
(0)

jk

where the subcomponents are defined by

Njk = −
�

u j · (u · ∇)ukd3�x, (9)

Ljk =

�
u j · (∇ × Bk) × Bd3�x, (10)

L
(0)

jk
=

�
u j · (B0 · ∇)Bkd3�x, (11)

I jk =

�
B j · ∇ × (uk × B)d3�x, (12)

I
(0)

jk
=

�
B j · (B0 · ∇)ukd3�x. (13)

These subcomponents are carefully defined to satisfy the

balance conditions

Njk = −Nk j, (14)

Ljk = −Ik j, (15)

L
(0)

jk
= −I

(0)

k j
. (16)

The first balance equation (14) implies the energy debit and

credit between the budget of the kinetic energies E
(u)

j
and
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Fig. 5 Wavelet spectra of nonlinear kinetic energy transfer Njk .

Solid circles: Njk < 0, i.e. energy is transferred from u j to

uk; open circles: Njk > 0. Contours are drawn at −0.95,
−0.85, ..., 0.85, 0.95 of max{|Njk |} to grasp the amplitude
of Njk visually.

E
(u)

k
is exactly balanced by the modulus of Njk. The rest

two equations (15) and (16), on the other hand, imply the

energy balance relation between the budget of the kinetic

and magnetic energies E
(u)

j
and E

(B)

k
.

Distribution of scale-to-scale wavelet nonlinear en-

ergy transfer Njk is shown in Fig.5. Since Njk satisfies

the balance condition (14), the graph is odd with respect

to the line j = k. If Njk has positive value at ( j, k), it im-

plies that energy is transferred from E
(u)

j
to E

(u)

k
by Njk.

Since positive peaks are aligned at k = j+ 1, the following

two characteristics are concluded: (1) energy is transferred

from larger scales to smaller ones, and (2) the dominant

nonlinear transfers are local. Although the flow is not fully

developed turbulent state but has only several large rolling-

up vortices, this tendency is quite similar to that of fully

developed three dimensional turbulent flow [5].

Energy transfer between the velocity and magnetic

fields by magnetic induction L jk is shown in Fig.6. It is

remarkable that, irrespective of the scale of magnetic field,

transfer to the magnetic energy is induced by the large

scale wavelet modes of the velocity field, i.e. u1, u2 and

u3. This result directly shows that the induction of mag-

netic field is dominated by large scale flow structures. Es-

pecially for the smaller scales of magnetic field, this result

implies that the inductive energy transfer is dominated by

non-local interactions. It should be remarked that u2, the

mode that most intensively excites the magnetic field does

not agree with the peak of the kinetic energy spectrum E
(u)

1
.

It seems interesting that weak backscatters from magnetic

to kinetic energy are seen at ( j, k) = (2, 2), (5, 5). Similar

backscatter is observed for t = 16, 18, 20.

5. Discussion
In the present study, we investigated the effect of co-

herent isolated vortices on the excitation process of mag-

Fig. 6 Wavelet scale spectra of energy transfer from velocity to

magnetic field Ljk(= −Ik j). Solid circles: Ljk < 0, i.e.
energy is transferred from u j to Bk; open circles: Ljk > 0.

Contours are drawn by the same way as Fig.5.

netic field under the existence of uniform backgroundmag-

inetic field. Wavelet analysis of energy redistribution pro-

cess via the nonlinear and induction/Lorentz force term

shows that the motion of fluid is dominated by local in-

teractions while the magnetic field is induced mainly by

the large scale fluid motions.

The small scale fluid motions are enhanced by all the

terms, i.e. nonlinearity, Lorentz force and Alfvén waves.

This implies that MHD dynamics may promote the devel-

opment of turbulent fluid motion, which is characterized

by the highly excited small scale fluid motions.

In the present study we used only the information

on the spatial scale of wavelets. Wavelet scale-to-scale

analysis of the energy transfers gives consistent results to

Fourier ones. Analysis using the spatial location informa-

tion of wavelets, which is expected to clarify the relation

between coherent structures and energy transfers in detail,

is now underway.
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